Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 81 - 88 of 1809 in category (newest first):


Non-destructive subsurface imaging of carbon nanotubes in polymer composites

carbon_nanotubesResearchers report a non-destructive and high throughput 3D imaging of carbon nanotubes (CNTs) embedded in polymer matrix via Scanning Electron Microscopy (SEM). While have been several open questions remaining for SEM subsurface imaging of CNTs, this new findings clarify these issues and help establish SEM subsurface imaging as a useful and facile method to provide quantitative 3D information on CNT dispersions in polymer composites.

Posted: Feb 18th, 2015

Plasmonic nanocrystals for combined photothermal and photodynamic cancer therapies

hyperthermiaAn international team of researchers used abiotic assays, cultured cancer cells, and a melanoma animal model to demonstrate the photothermal therapy (PTT) activity of copper sulfide nanocrystals. The research lays out the working principle of colloidal, near-infrared light (NIR) plasmonic copper sulfide nanocrystals exploitable for both photodynamic therapy (PDT) and PTT therapy with NIR activation. This is the first report that under a NIR light radiation copper sulfide nanocrystals achieve efficient cancer destroying efficacy via PTT and PDT mechanisms both in vitro and in vivo.

Posted: Feb 17th, 2015

Printing graphene folds

folded_grapheneIn an effort to find a way to introduce folds or waves into graphene in a simple and large-scale way, researchers have invented a rubber-stamp printing method to introduce waves into the graphene. The ability to controllably form folds in graphene has significant research and technological applications. Induced folds have a sublithographic width and macroscopic length. They could be used as channel materials or interconnects in chips, and it has been shown that stable field emitters are formed by folded graphene.

Posted: Feb 16th, 2015

3D-printing with graphene

graphene_structureThe successful implementation of graphene-based devices invariably requires the precise patterning of graphene sheets at both the micrometer and nanometer scale. It appears that 3D-printing techniques are an attractive fabrication route towards three-dimensional graphene structures. Researchers have now used flakes of chemically modified graphene, namely graphene oxide GO and its reduced form rGO, together with very small amounts of a responsive polymer, to formulate water based ink or pastes to be used in 3D printers..

Posted: Feb 9th, 2015

Nanotechnology and nanomaterials for camouflage and stealth applications

stealth_fighterThis article briefly describes how nanomaterials and nanotechnology can be useful in the strategic area of camouflage and stealth technology. The section on threat perception briefly describes about various sensors and platforms from where those sensors can be operated for the purpose of surveillance, detection and identification of military objects. Prominent nanomaterials, which can find applications in futuristic stealth have been discussed.

Posted: Jan 30th, 2015

3D printed 'smart glue' leverages DNA assembly at the macroscale

colloidal_gelDesigning systems that build themselves is one of the great dreams of nanotechnology researchers, and they are taking great strides towards developing such 'bottom-up' nanotechnology fabrication techniques. Fabrication processes based on DNA might change this: DNA origami have been heralded as a potential breakthrough for the creation of nanoscale devices. Researchers have now developed methods to assemble DNA-functionalized microparticles into a colloidal gel, and to extrude this gel with a 3D printer at centimeter size scales.

Posted: Jan 29th, 2015

Nanowaste - Nanomaterial-containing products at the end of their life cycle

landfillAt the end of their product life cycle, nanomaterials can enter waste treat ment plants and landfills via diverse waste streams. Little, however, is known about how nanomaterials behave in the disposal phase and whether potential environmental or health risks arise. The current assumption is that stable nanoparticles are neither chemically nor physically altered in waste incineration plants and that they accumulate especially in the residues (e.g. slag). These residues are ultimately dumped. The disposal problem in the case of stable nanoparticles is therefore merely shifted to the subsequent steps in the waste treatment process.

Posted: Jan 27th, 2015

Fully transparent, rollable electronics built with a graphene/carbon nanotube backbone

transparent_electronicsResearchers have successfully built rollable and transparent electronic devices that are not only lightweight, but also don't break easily. They managed to overcome two major challenges associated with the manufacture of flexible electronics: The temperature restriction of plastic substrates and the difficulty of handling flexible electronics during the fabrication process. The team rolled their transistor devices 100 times on a cylinder with radius of 4 mm, without significantly degrading their performance.

Posted: Jan 23rd, 2015