Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 81 - 88 of 89 in category Microscopy, Spectroscopy, Imaging (newest first):


Watersoluble, luminescent silicon nanoparticles with high quantum yield

Current medical and biological fluorescent imaging is limited by the use of dye markers, which are not photostable. The dyes can break down under photoexcitation, room light or higher temperatures. The observation of strong visible emission in porous silicon therefore has triggered substantial interest in exploring the synthesis and characterization of silicon nanoparticles. Due to their biocompatibility, high photoluminescence quantum efficiency and stability against photobleaching, silicon nanoparticles are expected to be an ideal candidate for replacing fluorescent dyes in many biological assays and fluorescence imaging techniques. For instance, they have been proposed as better quantum dots for in vivo applications, potentially replacing quantum dots of highly toxic cadmium. Different synthetic and physical methods have been used to prepare silicon nanoparticles. However, the yields of nanoparticles from these methods are very low and an HF (hydrofluoric acid) etching process is often necessary to obtain photoluminescent, hydrogen-terminated silicon nanoparticles. Now, researchers have developed a new solution route for the production of macroscopic amounts of hydrogen terminated silicon nanoparticles without hazardous material handling. This synthesis route is simple and thus offers great opportunity for scaled-up preparation of semiconductor materials.

Posted: Feb 19th, 2007

Single atom manipulation on a 3-D surface

In recent years, the manipulation of single atoms and molecules has been a major advance in the application of the scanning tunneling microscope (STM). The main appeal of STM manipulation is the ability to access, control and modify the interactions between the tip and the adsorbate, a few angstroms apart. So far, however, atom manipulation using a STM or an AFM -tip has been restricted to flat surfaces. Manipulation of atoms on a rough terrain requires much more precise control at the atomic scale. Researchers now report extraction and manipulation of individual silver atoms on three dimensional silver nanoclusters. This is the first demonstration that individual atoms can be repeatedly pulled out from a silver cluster on a silver surface using STM tip. It is also the first atom manipulation work done on a 3-D surface. There are still very few research groups that have demonstrated single atom manipulation with atomic scale precision on flat surfaces. This remarkable achievement has an impact on the fundamental understanding of interactions between the matters. While it certainly is not a commercial production technique, it does further the fundamental understanding of the interaction between atoms, and it is an atom production technique that can be used to extract the atoms for atomistic construction.

Posted: Dec 19th, 2006

Molecular imaging as a step towards personalized medicine

Conventional diagnostic imaging is mainly based on morphological contrast that is a result of different general tissue characteristics. Molecular imaging is a new approach for detecting diseases much earlier, visualizing biological processes at the cellular and molecular level in living organisms, and detecting changes in biochemistry. Corresponding molecular markers appear in quite low concentrations. Hence, the imaging technique must be very sensitive. Magnetic resonance imaging (MRI) has some significant advantages in terms of using non-ionizing radiation (in contrast to x-rays) and giving high resolution tomographies for any arbitrary position and orientation. However, conventional MRI suffers from inherent low sensitivity. A new method, using xenon as the signal source, was developed by researchers in California and will make MRI an important technique in molecular imaging, offering a huge potential for specific detection of disease markers. The new technique allows detection of signals from molecules present at 10,000 times lower concentrations than conventional MRI techniques. Called HYPER-CEST, for hyperpolarized xenon chemical exchange saturation transfer, this new technique could become a valuable tool for medical diagnosis, including the early detection of cancer.

Posted: Nov 7th, 2006

Fluorescent nanobodies could revolutionize biomedical research - thanks to camels

Antibodies are large Y-shaped proteins used by the immune system to identify and neutralize foreign objects like bacteria and viruses. Each antibody recognizes a specific antigen unique to its target. That makes them valuable tools for the analysis of biomolecules in research, diagnostics and therapy. However, antibodies are huge (150 kDa) biomolecules and are not functional within a living cell due to the reductive environment of the cytoplasm. Normally, antibodies are used to detect antigens on fixed an permeabilized cells (in other words: dead cells). But neither does that provide any information about the dynamic changes of the antigen within different stages of the cell cycle, nor about its overall mobility. A research group at the University of Munich has now succeeded in developing much smaller molecules for antigen detection in living cells.

Posted: Nov 1st, 2006

Infrared imaging of sub-10 nm particles

Objects a thousand times smaller than the wavelength of infrared light (10 micrometers) are undetectable by standard far-field optical infrared microscopy since the weak nanoparticle signals would be buried far below the background level. To overcome this drawback and to achieve nanoscale spatial resolution researchers in Germany illuminate the nanoparticles by a highly intensive nanoscale infrared light spot. It is generated in the nano-gap between a laser-illuminated scanning metal tip and the substrate supporting the particles. The simple but very efficient trick finally allowing detection of sub-10 nm particles is the use of highly reflecting substrates instead of glass slides typically used as a sample carrier in optical microscopy.

Posted: Aug 28th, 2006

Vibrational in situ analysis of individual molecules

Single molecule Raman spectroscopy of molecules on metal surfaces was achieved by means of optical field-enhancement from a scanning probe tip. This was made possible by the optical antenna configuration formed by optical coupling between metallic tip and the substrate.

Posted: Jun 16th, 2006