Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 81 - 88 of 197 in category All (newest first):

 

A nano-thermodynamic look at gold-copper alloys

nanoparticlesGold-copper alloys are very popular catalysts in nanotechnology, for instance to efficiently convert carbon dioxide or to help fabricate a more powerful and longer lasting fuel cell material. This alloy exhibits novel physical and chemical properties at the nanoscale. Although the Au-Cu alloy has been extensively studied in the literature both at the bulk and nanoscales, the prediction of phase diagrams at the nanoscale has been missing. A new paper present sthe phase diagram of Au-Cu at the nanoscale for the relevant distinct polyhedral morphologies of nanoparticles at sizes 4 nm and 10 nm.

Oct 29th, 2014

Nanotechnology compendium for teachers and educators

nanotechnology_compendiumThe European Commission has published a compendium 'Nanotechnologies: Principles, Applications, Implications and Hands-on Activities' that has been specifically developed to provide the educational communities with relevant, accurate and updated materials to inform, motivate and inspire young people to know more about nanosciences and nanotechnologies concepts and applications. This resource has been developed within the context of the European research project Nanoyou, and it has been enriched with numerous and multifaceted inputs, reflections and insights on societal issues, also provided by the European project TimeforNano.

Oct 6th, 2014

A convenient method to chemically modify boron nitride nanotubes

boron_nitride_nanotubeSo far, it has been generally accepted knowledge that boron nitride nanotubes (BNNTs) are highly inert to oxidative treatments and can only be covalently modified by highly reactive species. By contrast, oxidation of carbon nanotubes has been proven very convenient and fundamentally important to modify the nanotube structure and morphology via controlled corrosive effects. Now, researchers have discovered a convenient method to disperse and chemically modify the morphology of BNNTs by sonication in aqueous ammonia solutions.

Aug 13th, 2014

A room-temperature alternative to reducing the thermal conductivity of crystalline silicon

crystalline_siliconThermoelectric materials hold great promise for turning waste heat back into useful power and are touted for use in hybrid cars, new and efficient refrigerators, and other cooling or heating applications. But they have one big drawback: they are very inefficient. Since thermoelectric devices work by maintaining a temperature difference between their different sides, it is important that the used materials have low conductivity, i.e. are good thermal insulators.

Jul 7th, 2014

From squid protein to bioelectronic applications

squid_skinProton-conducting materials have become important for a wide range of technologies, such as fuel cells, batteries, and biosensors. A great deal of research has been devoted to developing improved and application-specific proton conducting materials. Researchers even developed a proton-based transistor that could let machines communicate with living things. Scientists now have discovered and characterized novel electrical properties for the cephalopod structural protein reflectin.

Jun 11th, 2014

Understanding what happens at the interface of enzymes and nanomaterials

enzyme_on_carbonStudies have shown that in a favorable nano environment, enzyme immobilization onto nanosupports could lead to increased enzyme stability and improved specificity, and could allow for prolonged enzyme functionality through chemical and physical treatment. Researchers also have shown that immobilization onto carbon-based nanosupports can increase the enzyme turnover and allow for prolonged enzyme-based conjugates isolation and usage. In new work, researchers have now taken another step towards the detailed characterization and optimization of enzyme-nanosupport interface reactions.

May 14th, 2014

A novel approach to Density Functional Theory

hydrogen_moleculeIn the past decades, the Density Functional Theory (DFT) has been very successful in helping chemists and physicists understand the properties of matter at extremely small scales. Although some problems still remain in the standard implementation of DFT, it represents an important theoretical tool which is used on a daily basis. Scientists now propose a variant of the standard DFT which could pave the way towards the simulation of very complex chemical and physical systems at a quantum level.

Apr 22nd, 2014

Anti-icing strategies inspired by nanotechnology and biology

iceIce accumulation is not just a cost and safety problem for the airline industry and other transportation areas, together with undesired environmental impacts. Here are some examples: Transmission lines and power network towers may deform or even collapse with the burden of excess amount of ice; ice accretion on wind turbine blades can cause a production loss as much as 50% of the annual production; frost and ice accumulation in refrigerators and heat exchangers results in a decrease of heat transfer efficiency. Therefore, great efforts have been made to understand the mechanism of icing and investigations on anti-icing and deicing have been extensively carried out. Various anti-icing and deicing methods have been developed such as for instance nanocoatings and other nanostructured surfaces.

Mar 18th, 2014