Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 937 - 944 of 2761 in category All (newest first):

 

CaO particles as promising templates for hierarchical porous graphene growth

porous_grapheneHierarchical porous carbon/graphene (HPC/HPG) materials have been intensively investigated over the past decades. These materials are demonstrated as promising electrode materials for various systems, such as lithium-ion batteries, lithium-sulfur batteries, supercapacitors, and fuel cells, with a remarkable capacity, high efficiency, long stability, and excellent rate capability. Researchers have now proposed the employment of hierarchical porous calcium oxide (CaO) particles as effective catalytic template for the facile CVD growth of graphene.

Jan 26th, 2016

What if ... we had radar that recognized us from the way we walk?

radar_sensorThe future Internet of Things (IoT), with its intuitive applications, will operate based on an broad stream of data supplied by sensors placed everywhere. These will be sensors that are many times smarter and more sensitive than the ones we have today. They will also be produced and installed in far greater numbers and be much cheaper than they are now. For example, researchers envisage a radar that is capable of distinguishing pedestrians from cyclists. That technology might even allow to identify individuals from the way they walk.

Jan 18th, 2016

Green nano: Positive environmental effects through the use of nanotechnology

green_nanoThis dossier is concerned with the question to what extent a concept along the lines of the 'green nano design principles' developed by the German NanoCommission can contribute to environmentally friendly developments in the area of nanotechnology. For this purpose, it introduces research projects which have implemented certain aspects of the green nano design principles. Moreover, on the basis of technological and scientific research and development, the question is raised whether or not, and if so, to what extent concepts such as green nano design principles can support the incorporation of environmental aspects into research.

Jan 15th, 2016

Sulfiphilic electrocatalysts dredge the polysulfide 'flooding' in Li-S batteries

moleculeCapacity decay caused by polysulfides' detachment from the cathode framework has been a major issue preventing the broad application of lithium-sulfur (Li-S) batteries. Researchers discovered that it is the incompatibility between polar lithium polysulfide molecules and commonly used nanocarbon cathode scaffolds that restraines the redox reactivity. By incorporating sulfiphilic cobalt disulfide into carbon/sulfur cathodes, They managed to introduce strong interaction between lithium polysulfides and CoS2 under working conditions.

Jan 13th, 2016

High-quality graphene quantum dots from agricultural waste

rice_husksDue to the high concentration of silica in rice husks, most of the present research focuses on the preparation of silicon-based materials, which exhibit broad applications in the fields of adsorption, catalysis, energy storage, etc. There is also a large amount of organic components in rice husks, which is typically wasted in the preparation of these silica materials. Researchers now have developed an advanced method for the comprehensive use of rice husks. They fabricated high quality graphene quantum dots from the organic components of rice husks, and simultaneously obtained mesoporous silica nanoparticles with a high surface area from the inorganic content.

Jan 12th, 2016

Box-shaped graphene – a novel nanostructure

boxshaped_grapheneA scientist has discovered a previously unknown three-dimensional nanostructure consisting of graphene sheets. Graphene is a single monolayer of carbon atoms forming a hexagonal two-dimensional crystal lattice. The discovered nanostructure is a multilayer system of parallel hollow channels with quadrangular cross-section extending along the surface. The discovered nanostructure looked so extraordinary that it took some time to understand what it actually was. The structure was dramatically different from whatever had previously been observed on graphite.

Jan 11th, 2016

Investigating fracture behavior of nanocrystalline Ni-W thin-films

cantilever_testIn the past couple of decades, nickel-tungsten (Ni-W) amorphous and nanocrystalline materials have been drawing more and more research interest due to the superior mechanical properties such as high hardness, good mechanical performance, and excellent corrosion resistance. Striving to enhance the mechanical performance of Ni-W thin film alloys, researchers report how the annealing temperature will influence the microstructure evolution and the fracture properties of Ni-W alloys.

Jan 8th, 2016

Toward the automation of plasmonic design

plamonic_nanostructureMetal nanoparticles, when excited at optical frequencies, may experience localized surface plasmon resonances, which determine enhanced local electric fields, increased scattering cross sections, and high sensitivity to the environment refractive index. Thanks to these unique properties, they are widely utilized especially in biomedical sciences and engineering. Researchers have now conceived and demonstrated a new method to fully automate the design of metal nanoparticles.

Jan 7th, 2016