Open menu
Nanowerk

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1297 - 1304 of 1998 in category (newest first):

 

Just looking at graphene can change its properties

grapheneGraphene is a recently discovered allotrope of carbon, which consists of a planar single sheet of carbon atoms arranged in honeycomb lattice. It has attracted tremendous attention of the nanotechnology research community owing to a number of unique physical properties. From a practical point of view, some of the most interesting characteristics of graphene are its extraordinarily high room temperature carrier mobility and recently measured extremely high thermal conductivity. The outstanding current and heat conduction properties of graphene are beneficial for the proposed electronic, interconnect, and thermal management applications. There is a realistic possibility that soon the fastest transistors and most sensitive detectors will be made out of graphene. For instance, we have just reported that next generation computer memory could be made of graphene. In order to build useful devices from materials which have only atomic thickness, one has to use extensively scanning electron microscopy, transmission electron microscopy, and focused ion beam processing. Unfortunately, all material characterization techniques which involve electron beam irradiation of the samples may result in damage to the material and disordering of the crystalline lattice. So far, despite the practical importance of the issue, the scale of this potential damage to single-layer of bi-layer graphene has not been investigated. What happens with the crystalline lattice has also been unclear.

Posted: Dec 30th, 2008

Nanotechnology to repair the brain

neuronNeural engineering is an emerging discipline that uses engineering techniques to investigate the function and manipulate the behavior of the central or peripheral nervous systems. Neural engineering is highly interdisciplinary and relies on expertise from computational neuroscience, experimental neuroscience, clinical neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, computer engineering, neural tissue engineering, materials science, and nanotechnology. In order for neural prostheses to augment or restore damaged or lost functions of the nervous system they need to be able to perform two main functions: stimulate the nervous system and record its activity. To do that, neural engineers have to gain a full understanding of the fundamental mechanisms and subtleties of cell-to-cell signaling via synaptic transmission, and then develop the technologies to replicate these mechanisms with artificial devices and interface them to the neural system at the cellular level. A group of European researchers has now shown that carbon nanotubes may become the ideal material for repairing damaged brain tissue.

Posted: Dec 29th, 2008

Nanotechnology lenses for ultracompact photonic devices

nanoplasmonicsThe development of electron-beam lithography, focused ion beam milling, and other nanofabrication techniques has provided researchers with great freedom to pattern metallic structures at the nanoscale. This has fueled the design and implementation of new ultracompact photonic devices based on the plasmonic behavior of metals. Plasmonics is an emerging field of nanophotonics that relies on hybrid light-charge density waves on metal-dielectric interfaces and holds the promise for control of light at dimensions much below the free-space wavelength of light. Lenses have always been an important component for controlling light in optical systems. The focusing capability of conventional, dielectric-based microlenses however deteriorates as their physical dimensions are reduced toward a single-wavelength scale. That's why scientists have begun exploring alternative approaches to refractive lensing. While nano-patterning of optically thick metallic films was theoretically proposed as an alternative to refractive lensing, scientists at Stanford University have now reported the first experimental demonstration of far-field lensing using a plasmonic slit array.

Posted: Dec 19th, 2008

Bio-based nanotechnology materials for a green society

bionanomaterialSynthetic fibers are ubiquitous in modern society and their manufacture represents a huge, multi-billion dollar worldwide industry. Synthetic fibers - carbon fibers, nylon, polyester, kevlar, spandex, etc. - are manufactured from fossil fuels, usually from oil, but sometimes from coal or natural gas. Most of these materials are not biodegradable and, in addition to their significant carbon footprint during production, they pose environmental problems at the end of their life cycle. Natural fibers, on the other hand, such as wool and cotton, come from renewable animal or plant sources but they usually lack the high-performance characteristics of many synthetic fibers. This may change, as the new field of bio-based nanomaterials promises to deliver environmentally friendly, high-performance bio-fiber materials that can replace some of the synthetic materials.

Posted: Dec 18th, 2008

Nanotechnology litigation: Winning the war before it starts

litigationCompanies manufacturing, using, or selling nanoproducts in the Unites States would be well-served, at this early stage, to think proactively about minimizing future litigation risks. Candidly, the legal world has thus far lagged behind the growth in nano-related products and enterprises. But if the encyclopedic history of toxic tort, product liability, and environmental litigation in this country is any guide whatsoever, there is no reason enterprising plaintiffs' attorneys are less likely to tackle nanotechnology than other lucrative products and technological advances. Indeed, references to a potential link between carbon nanotubes and lung cancer have already sprouted on plaintiff-oriented websites across the country.

Posted: Dec 17th, 2008

There is something fishy about these nanotubes

salmonResearchers have demonstrated that salmon DNA can be used to develop a simple and scalable method for sorting carbon nanotubes that reduces the cost, as compared to commonly used synthetic DNA, by a factor of 1,000. Before carbon nanotubes (CNTs), especially single-walled ones, can live up to the many expectations for their use in nanoelectronics, researchers have to overcome a seemingly trivial but nonetheless major obstacle: how to separate a produced batch of nanotubes according to their properties such as diameter, length, chirality and electronic attributes. Current production methods for CNTs result in a jumble of units with different properties, all lumped together in bundles, and often blended with some amount of amorphous carbon. These mixtures are of little practical use since many advanced applications, especially for nanoelectronics, are sensitively dependent on tube structures and the slightest deviation from a desired set of parameters can lead to vastly different performance results.

Posted: Dec 16th, 2008

Nanotechnology solutions to climate change

climate_changeClimate change is high on the global agenda. While the United Nations Climate Change Conference in Poznan, Poland, in December 2008, is an important step towards achieving an international agreement on climate change scheduled for the upcoming Conference of the Parties in Copenhagen at the end of 2009, policy makers and practitioners alike are increasingly looking for practical solutions. A new report by the United Nations University Institute of Advanced Studies (UNU-IAS) offers three innovative solutions in responding to climate change, namely nanotechnology, ocean energy and forestry. The 46-page report goes beyond the technological, biological and procedural aspects of these solutions by critically assessing the opportunities and challenges that each type of innovation presents. This report addresses the question why these innovations - despite their large potential to reduce emissions, ocean energy alone could cover the world's electricity needs - have not yet reached the stage of mass commercialization

Posted: Dec 15th, 2008

The Scanning Probe Agency - embedding nanotechnology developments in society

technology_and_societyA new report prepared for the German Federal Ministry of Education and Research outlines an institutional model that meets the safety and security demands of human health, the environment and society. The report draws on an analysis of national and international approaches to nanotechnology regulation. One of the key findings is that in the case of developing nanotechnologies, the place of classical regulation has been taken by precautionary measures such as observatories, voluntary codes of conduct and stakeholder dialogues. The development of an institutional model is proposed, the Scanning Probe Agency (SPA), as both a necessary and appropriate collective learning process and a means of generating public trust. Its guiding question would be: 'Is nanotechnology in good hands?'

Posted: Dec 12th, 2008