Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 135 in category Graphene and Other 2D Materials (newest first):

 

3D-printing with graphene

graphene_structureThe successful implementation of graphene-based devices invariably requires the precise patterning of graphene sheets at both the micrometer and nanometer scale. It appears that 3D-printing techniques are an attractive fabrication route towards three-dimensional graphene structures. Researchers have now used flakes of chemically modified graphene, namely graphene oxide GO and its reduced form rGO, together with very small amounts of a responsive polymer, to formulate water based ink or pastes to be used in 3D printers..

Posted: Feb 9th, 2015

Elemental 2D analogues of graphene: silicene, germanene, stanene, phosphorene

2D_materialA comprehensive analysis of the fundamental properties, synthesis approaches and the future prospects of silicene, germanene, stanene, and phosphorene. It covers the literature on the fundamental properties of graphene analogous elemental sheets, inclusive of both theoretical and experimental knowledge. Various bottom-up synthesis techniques and top-down exfoliation approaches for the fabrication of two-dimensional elemental sheets are discussed.

Posted: Jan 21st, 2015

Biodegradable graphene can radio-thermally ablate radiation and chemo resistant cancer cells

Transferrin-conjugated_grapheneResearchers have developed a simple method to thermally ablate highly resistant cancer cells using targeted biodegradable graphene nanoparticles. They found that graphene can convert non-ionizing radio waves - the same that are used in FM radios - into heat energy at microscopic levels. This heat is sufficient to completely destroy proteins and DNA inside individual cancer cells, irrespective of any kinds of resistant mechanisms that drives cancer cells at advanced stages.

Posted: Jan 16th, 2015

Novel mono-elemental semiconductors: arsenene and antimonene join 2D family

arseneneResearchers have identified novel 2D wide-band-gap semiconductors with high stabilities, namely monolayer arsenene and antimonene. These materials are indirect wide-band-gap semiconductors, and under strain, they become direct band-gap semiconductors. For arsenene and antimonene, such dramatic transitions of electronic properties could open a new door for nanoscale transistors with high on/off ratio, blue/UV optoelectronic devices, and nanomechanical sensors based on new ultrathin semiconductors.

Posted: Jan 14th, 2015

Shapeshifting metal nanoparticles eating tracks in graphene

graphene_patterningA widely discussed method for the patterning of graphene is the channelling of graphene by metal nanoparticles in oxidizing or reducing environments. Researchers have now performed in-situ transmission electron microscopy experiments of silver nanoparticles channeling on graphene and discover that the interactions in the one-dimensional particle-graphene contact line are sufficiently strong so as to dictate the three-dimensional shape of the nanoparticles.

Posted: Dec 19th, 2014

Ultraflat transfer method for graphene surface force balance

grapheneThe surface force balance (SFB) provides measurements of surface and colloidal forces in liquids such as electrostatic surface forces, van der Waals forces, and solvation forces. Until now, the SFB required mica sheets as the substrate for measurements. This was the only material available in an atomically smooth state over centimeter-scale areas as well as being optically transparent as required for the optical interferometry. By replacing the mica sheets with graphene, electrically conducting and atomically smooth surfaces for the measurement of surface forces have now been created.

Posted: Dec 10th, 2014

Unlocking the potential of graphenes - functionalisation via plasma

plasma_reactorGraphene's properties appear to have almost limitless application potential, ranging from composite materials for the aerospace industry, next-generation batteries and supercapacitors, flexible displays and optical electronics and biosensors for applications in healthcare and medical devices. So why hasn't graphene, with the potential to vastly outperform the majority of currently available materials, been integrated into everything from wristwatches to ocean liners?

Posted: Dec 4th, 2014

3D printed nanostructures made entirely of graphene

nanowiresThe successful implementation of graphene-based devices invariably requires the precise patterning of graphene sheets at both the micrometer and nanometer scale. Finding the ideal technique to achieve the desired graphene patterning remains a major challenge. Researchers have now demonstrated 3D printed nanostructures composed entirely of graphene using a new 3D printing technique. The method exploits a size-controllable liquid meniscus to fabricate 3D reduced graphene oxide nanowires.

Posted: Nov 27th, 2014