Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1809 - 1816 of 2024 in category (newest first):


Single atom manipulation on a 3-D surface

In recent years, the manipulation of single atoms and molecules has been a major advance in the application of the scanning tunneling microscope (STM). The main appeal of STM manipulation is the ability to access, control and modify the interactions between the tip and the adsorbate, a few angstroms apart. So far, however, atom manipulation using a STM or an AFM -tip has been restricted to flat surfaces. Manipulation of atoms on a rough terrain requires much more precise control at the atomic scale. Researchers now report extraction and manipulation of individual silver atoms on three dimensional silver nanoclusters. This is the first demonstration that individual atoms can be repeatedly pulled out from a silver cluster on a silver surface using STM tip. It is also the first atom manipulation work done on a 3-D surface. There are still very few research groups that have demonstrated single atom manipulation with atomic scale precision on flat surfaces. This remarkable achievement has an impact on the fundamental understanding of interactions between the matters. While it certainly is not a commercial production technique, it does further the fundamental understanding of the interaction between atoms, and it is an atom production technique that can be used to extract the atoms for atomistic construction.

Posted: Dec 19th, 2006

Countering the effects of drug overdose with nanotechnology

Drug intoxication, developed as a result of accidental overdosing, is a serious health problem. Drug overdoses are sometimes also caused intentionally to commit suicide, but many drug overdoses are usually the result of either irresponsible behavior, or the misreading of product labels. Other causes of overdose (especially heroin) include multiple drug use with counter indications (cocaine/amphetamines/alcohol) or use after a period of abstinence. According to the National Center for Health Statistics, in the U.S. alone almost 20,000 people a year die due to drug overdoses and accidental poisoning. While there has been a tremendous effort to develop drug delivery methods using nanotechnology, a new report shows that this could work the other way around as well, and that porous nanoparticles can soak up drug molecules in the body like a sponge. This could help to reduce fatalities from overdoses, according to tests showing that tiny spheres of poly(acrylic acid) can absorb substantial amounts of an antidepressant and an anesthetic in just a few minutes. In short, nanoparticles can act as potent antidotes!

Posted: Dec 18th, 2006

A new medical nanotechnology discipline is emerging

A novel discipline is emerging in medicine: nanoscopic medicine. Based on the premises that diseases manifest themselves as defects of cellular proteins, these proteins have been recently shown to form specific complexes exerting their functions as if they were nanoscopic machines. Nanoscopic medicine refers to the direct visualization, analysis (diagnosis) and modification (therapy) of nanoscopic protein machines in life cells and tissues with the aim to improve human health. The term nanoscopic medicine was coined by a group of researchers in Germany whose mission is to extend live cell nanoscopy into a comprehensive diagnostic and therapeutic scheme. This includes both the creation of a set of novel instruments and the analysis of nanoscopic protein machine networks in health and disease. In addition, they seek to construct artificial devices mimicking cellular nanomachines.

Posted: Dec 15th, 2006

Rewritable multi-component photonic circuits

Along the way to all-optical devices in communication and information technology, photonic crystals play a significant role. They form a basis material for the future realization of optical components and circuits, and maybe even complex optical circuits or optical computers. Examples include complex waveguides, integrated microcavities, channel drop filters, optical switches and low-threshold lasers. All such devices depend on the inclusion of defect structures, non-linear materials and/or light-emitters into photonic bandgap material. The combination of several devices into one photonic crystal would allow to realize the optical equivalent of an electronic circuit. So far, the intentional inclusion of such combined structures was very difficult to realize in practice, however. A group of German and Italian researchers now present a powerful technique that allows to create such photonic circuits inside photonic crystals by controlled micro-infiltration of liquid substances with sub-micron resolution. This approach forms an enabling technology for the realization of all optical devices and circuits.

Posted: Dec 14th, 2006

Portable, cheap and fast explosives detector built with nanotechnology

Due to the the increased use of modern bombs in terrorist attacks worldwide, where the amount of metal used is becoming very small, the development of a new approach capable of rapidly and cost-efficiently detecting volatile chemical emission from explosives is highly desirable and urgently necessary nowadays. The trained dogs and physical methods such as gas chromatography coupled to a mass spectrometer, nuclear quadrupole resonance, electron capture detection as well as electrochemical approaches are highly sensitive and selective, but some of these techniques are expensive and others are not easily fielded in a small, low-power package. As a complementary method, however, chemical sensors provide new approaches to the rapid detection of ultra-trace analytes from explosives, and can be easily incorporated into inexpensive and portable microelectronic devices. Researchers in PR China have developed a nanocomposite film that shows very fast fluorescence response to trace vapors of explosives such as TNT, DNT or NB.

Posted: Dec 13th, 2006

Precision control of single-molecule electrical junctions

There is much discussion of molecules as components for future electronic devices and in recent years it has been possible to position single molecules in electrical junctions. Molecular and nanoscale structures have been shown to be capable of basic electronic functions such as rectification, negative differential resistance and single-electron transistor behavior. These observations show that molecular-electronic functions can be controlled through chemical manipulation. However, the contacts, the local environment and the temperature can all affect molecules' electrical properties. This sensitivity, particularly at the single-molecule level, may limit the use of molecules as active electrical components, and therefore it is important to design and evaluate molecular junctions with a robust and stable electrical response over a wide range of junction configurations and temperatures. A step in this direction, researchers in the UK now report an approach to monitor the electrical properties of single-molecule junctions, which involves precise control of the contact spacing and tilt angle of the molecule.

Posted: Dec 12th, 2006

Algae shells: one example how nanotechnology is trying to copy Mother Nature

A large portion of nanoscience and nanomaterial engineering is about trying to copy what has evolved in Nature. Take diatoms; a major group of hard-shelled algae and one of the most common types of phytoplankton. A characteristic feature of diatom cells is that they are encased within a unique cell wall made of silica. Silicate materials are very important in nature and they are closely related to the evolution of living organisms. Diatom walls show a wide diversity in form, some quite beautiful and ornate, but usually consist of two symmetrical sides with a split between them, hence the group name. Diatomaceous earth consists of fossilized remains of diatoms and, as an environmentally friendly material, finds wide use especially in filter applications. It is also used as a mild abrasive, as a mechanical insecticide, as an absorbent for liquids, as an activator in blood clotting studies, and as a component of dynamite. As it is also heat-resistant, it can be used as a thermal insulator. Artificial synthesis of hollow cell walls of diatoms, as generally re-creating the silicate chemistry of Nature by chemical methods, is a key target of nanomaterial science. Researchers in Japan have now reported a method to produce artificial diatomaceous earth-like materials.

Posted: Dec 11th, 2006

Potent antioxidants designed by nanotechnology

There has been a great deal of interest in the toxicity of nanoparticles in the context of respiratory health. The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. Research has shown that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. This has led researchers to the conclusion that there is a potential for engineering this group of nanoparticles for therapeutic purposes.

Posted: Dec 8th, 2006