Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 25 - 32 of 91 in category Microscopy, Spectroscopy, Imaging (newest first):


Traffic planning in the quantum world

quantum_trafficResearchers have demonstrated that electrons in nanoscale networks can behave like car drivers in congested cities. Traffic planners are sometimes faced with a rather counter-intuitive observation - adding a new road to a congested road network can lead to a deterioration of the overall traffic situation, i.e. longer trip times for individual road users. Or, in reverse, blocking certain streets in a complex road network can counter-intuitively reduce congestion. This has become known as the Braess paradox. Researchers have now applied the concept of the Braess paradox to the quantum world. By combining quantum simulations of a model system and scanning-probe experiments, they have shown that an analogue of the Braess paradox can occur in mesoscopic semiconductor networks, where electron transport is governed by quantum mechanics. The paradox manifests itself by an increase of the conductance network when one arm in the network is partially blocked in a controlled manner.

Posted: Feb 21st, 2012

A new tool to track the intracellular trafficking of nanomedicines

fluorescent_labellingIn nanomedicine, nanoparticles are used as vehicles for efficiently delivering therapeutic nucleic acids, such as disease-fighting genes and small interfering RNA (siRNA) molecules, into cells. But getting nanomedicines to their target sites inside cells is not the only challenge. It also is necessary to assess the intracellular processing of nanomedicines and the efficacy of their payload delivery - a task that is not exactly trivial given the complexity and dynamics of the mechanisms of endocytosis and intracellular trafficking. Researchers are therefore trying to develop robust and reliable tools to characterize and evaluate the intracellular processing of administered nanomedicines. As part of this effort, scientists have now introduced a quantitative approach to study live-cell endosomal colocalization dynamics of nanomedicines for gene delivery, based on single-particle tracking and trajectory-correlation.

Posted: Nov 21st, 2011

A framework to evaluate the uncertainties of AFM nanomechanical measurements

nanocrystalUncertainty evaluation is an often overlooked factor in many AFM material property measurement work - nevertheless it is critical for obtaining truly quantitative measurements. The atomic force microscope is used extensively for measuring the material properties of nanomaterials with nanometer resolution, unfortunately there is a lack of standards and uncertainty quantification in these measurements. Other fields, such as six sigma standards in industry and beam corrections in scanning electron microscopy, have developed thorough methods for quantifying the uncertainty in a given measurement, model, or system. Broadly speaking these methods can be classified as uncertainty quantification. Without applying the methods of uncertainty quantification to AFM measurements it is impossible to say if the measurements are accurate within 5% or 100%.

Posted: Nov 11th, 2011

When your food makes you glow - a novel optical bioimaging technique

fluorescent_imagingFruit flies (Drosophila melanogaster) are the workhorses in countless biomedical research laboratories around the world. The bioimaging of live specimens, ideally through all the stages of the fruit fly life cycle, is a tricky and often complicated undertaking. Researchers in India have now developed a relatively simple way to introduce fluorescent nanomaterials into fruit flies: They prepared carbon nanoparticles from wood waste and added them to the flies' food supply. The fluorescent fruit flies showed no toxic effects - upon withdrawal of the nanoparticles from their food, they excreted the fluorescing material and continued to proliferate to the next generation, demonstrating a return to their normal lives.

Posted: Nov 8th, 2011

Quantum point contact microscopy - a novel method for surface characterization

quantum_point_contact_microscopyThe atomic structures of nanoscale contacts are not available in most experiments on quantum transport. Scanning tunneling microscopy operates at a tip-sample distance of a few angstroms and relies on probing a conductive surface in the evanescent tail of electronic states. By decreasing the tip-sample distance the sensitivity to chemical interactions can be enhanced. This has already been demonstrated in non-contact atomic force microscopy, where the oscillating tip comes for short periods of time within the range of chemical interactions. A team of scientists has now developed Quantum Point Contact Microscopy as a novel imaging mode of low-temperature STM, where instead of measuring a current through a tunneling junction, a transport current through a quantum point contact formed by a single atom between the STM tip and the surface is recorded.

Posted: Aug 16th, 2011

Nanoindentation: Measuring in the sub-nanometer range

nanoindentationNanoindentation is derived from the classical hardness test but is carried out on a much smaller scale. It can be used to determine the hardness of thin layers as well as material properties such as elasticity, stiffness, plasticity, and tensile strength, or fracture toughness of small objects and microsystems in fields such as biotechnology. These measurements involve applying a small force to a sample using a sharp probe and measuring the resultant penetration depth. The measured value is used to calculate the contact area and hence the particular property of the sample material. Both the method of force application and the geometry of the indentation tip can be adjusted to suit the particular application.

Posted: Jun 29th, 2011

Shooting videos in the nanoworld to observe nanoscale processes

nanodropletLife as we know it is dominated by friction, the interaction between moving objects. Friction controls our everyday lives, from letting us walk to work, to holding a cup of tea. Friction forces act wherever two solids touch. Although friction has been investigated for hundreds of years - in the 15th century, Leonardo da Vinci was the first to enunciate two laws of friction - it is surprisingly difficult to examine how friction works at the nanoscale level due to the sheer difficulty of bringing nanoscale objects into contact and imaging them at the same time. Researchers have now demonstrated the ability to bring nanoscale objects together, rub them repeatedly across one another and see how friction changes nanosized materials in real time.

Posted: Apr 12th, 2011

Nanometrology - a key aspect of developing nanotechnologies

nanometrologyMetrology is the science of measurements, and nanometrology is that part of metrology that relates to measurements at the nanoscale. Many governments worldwide have existing nanotechnology policies and are taking the preliminary steps towards nanometrology strategies, for example in support of pre-normative R+D and standardization work. In this Nanowerk Spotlight, we look at the European Commission funded project Co-Nanomet as an example of the importance of nanometrology as a key enabling technology for quality control at the nanoscale. While a first and obvious benefit of metrology is its potential to improve scientific understanding, a second, equally important, but less obvious benefit of metrology is closely linked to the concepts of quality control or conformity assessment, which means making a decision about whether a product or service conforms to specifications.

Posted: Apr 8th, 2011