Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 25 - 32 of 388 in category Fabrication Technologies and Devices (newest first):

 

Flexible thermoelectric generator from bulk silicon

semitransparent_siliconSilicon offers a unique combination between mechanical and electrical properties making it one of the most developed materials in semiconductor industry. However, silicon is brittle and cannot be flexed, hindering its potential for high performance electronics that is flexible, stretchable or applied to irregular shapes. Researchers have now developed a pragmatic approach to achieve high performance integrated electronic systems, including thermoelectric energy harvesters, onto flexible silicon substrates.

Posted: Dec 11th, 2013

Rewritable, transferable, and flexible sticker-type organic memory

stickyFuture electronics will look nothing like today's rigid boxes, be they the latest smartphones, tablets, or computers. Instead, they will be extremely light, soft, flexible, transparent, and integrated into everyday objects like paper or fabrics. These advanced electronic systems will be fabricated on soft substrates by integrating multiple crucial components such as logic and memory devices as well as their power supply. Researchers have now successfully demonstrated a rewritable, transferable, and flexible sticker-type organic memory on arbitrary nonconventional substrates through a simple, low-temperature and cost-effective one-step methodology.

Posted: Oct 25th, 2013

Microfabrication inspired by Lego

silicon_blocksFor microprobes, both the pick-up and placement are challenging due to the adherent forces. For microgrippers, the pick-up is easier and secure due to the gripping motion, but the placement is still difficult. When a microgripper opens its gripping fingers, the microobject still adheres to one of the fingers by strong adhesion forces. Owing to force scaling laws, the adhesion forces at the microscale - capillary forces, van der Waals forces, and electrostatic forces - dominate gravity. To overcome these challenges, researchers have developed a manufacturing route to three dimensional silicon microsystems, which they termed 'micro-masonry', based on individual manipulation.

Posted: Oct 24th, 2013

Nanocoated fabric is super-repellent and self-healing

repellent_fabricAny coating, no matter how durable, is susceptible to physical and chemical damages. Self-healing, which has become a popular theme in the field of material science, can endow coatings with ability to recover their surface properties after being damaged. New work demonstrates that a superamphiphobic fabric with remarkable multi self-healing ability against both physical and chemical damages and exceptional liquid-repellency to low surface-tension liquids including ethanol can be achieved through a two-step wet-chemistry coating technique.

Posted: Oct 18th, 2013

Fuel cells from gelatin

gelatin_bubblesResearchers are working hard to find inexpensive alternatives to platinum catalysts for use in hydrogen fuel cells. Doped carbons were discovered to be a possible alternative to platinum-based materials about five years ago. Researchers have now developed a really simple route to carbon materials that perform almost as well as a commercial platinum/carbon in a key fuel cell reaction. To make these materials, they use gelatin - the same gelatin you'd use to make jelly/jello.

Posted: Oct 7th, 2013

A smart nanothermometer

thermometerIt is a challenge to measure the temperature variation at the surface of nanoparticles under optical illumination since nano-localized temperature variation is the most important parameter for applications ranging from nanomedicine to photonics. In particular, the conversion of light to heat trough the exploitation of the Localized Plasmonic Resonance (LPR) has enabled a remarkable breakthrough in fighting cancer. Now, researchers have advanced the monitoring of nanoscale temperature variations under optical illumination by combining the properties of gold nanorods and the capabilities of thermotropic cholesteric liquid crystals.

Posted: Oct 4th, 2013

Direct printing of liquid metal 3D microstructures

3d_printed_metalstructureThe ability to pattern materials into arbitrary 3D microstructures is important for electronics, microfluidic networks, tissue engineering scaffolds, photonic band gap structures, and chemical synthesis. However, existing commercial processes to 3D print metals usually require expensive equipment and large temperatures. In contrast, a novel, relatively simple method can print metal structures at room temperature. This makes the technique it compatible with many other materials including plastics. Also, the resulting structures are liquid and are therefore soft and stretchable.

Posted: Oct 2nd, 2013

Nanotechnology approach to corrosion sensing coatings

corrosion_detectionDifferent strategies for creation of self-healing coatings to prevent corrosion degradation have been suggested. The goal is to significantly reduce the maintenance costs in many industrial applications by applying active sensing coatings. Today we look at a novel sensing coating on the basis of nanocapsules containing pH-indicating agent. The main idea of this work is to create a novel active protective coating which is able to indicate when corrosion processes start under the coatings or in different defects.

Posted: Sep 30th, 2013