Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 25 - 32 of 131 in category Risks, Toxicology, Biocompatibility (newest first):


Self-propelled microrockets detect dangerous bacteria in food, clinical and environmental samples

bacteria_sensorEarly detection of food borne pathogenic bacteria is critical to prevent disease outbreaks and preserve public health. This has led to urgent demands to develop highly efficient strategies for isolating and detecting this microorganism in connection to food safety, medical diagnostics, water quality, and counter-terrorism. Conventional techniques to detect E. coli and other pathogenic bacteria are time-consuming, labor-intensive, and inadequate as they lack the ability to detect bacteria in real time. Thus, there is an urgent need for alternative platforms for the rapid, sensitive, reliable and simple isolation and detection pathogens. Taking a novel approach to isolating pathogenic bacteria from complex clinical, environmental and food samples, researchers have developed a nanomotor strategy that involves the movement of lectin-functionalized microengines. Receptor-functionalized nanoswimmers offer direct and rapid target isolation from raw biological samples without preparatory and washing steps.

Posted: Dec 8th, 2011

Natural nanomaterials - they are everywhere

volcanoNaturally occurring nanomaterials can be found everywhere in nature and only with recent advances in instrumentation and metrology equipment are researchers beginning to locate, isolate, characterize and classify the vast range of their structural and chemical varieties. Scientists are beginning to recognize that all sources of nanomaterials are important in evaluating the possible impact of nanoscale materials on human health and the environment; however, perhaps the greatest benefit to studying these materials will be in their ability to inform researchers about the manner in which nano-sized materials have been a part of our environment from the beginning.

Posted: Nov 24th, 2011

Hard to swallow - colloidal silver as health elixir

nanosilver_health_elixirColloidal silver is not a health elixir and should not be taken orally. Still, dubious online resources that sell silver dispersions or explain how to synthesize colloidal silver for nutritional purposes keep propagating mystic health effects of nano-silver. Whoever considers to "treat" themselves by taking colloidal silver certainly don't know what they want to treat themselves for. They should be aware that drinking an antimicrobial agent at any effectual dosage must inevitably cause harm to innumerable bacteria that are vital to our organism - especially in the alimentary canal. Drinking colloidal silver will either be noneffective or harmful. It is not medicine.

Posted: Nov 4th, 2011

High content screening of zebrafish greatly speeds up nanoparticle hazard assessment

zebrafish_content_screeningWith the mass production of engineered nanoparticles, risk assessment efforts are in need of platforms that offer predictive value to human health and environment, and also possess high throughput screening capacity. Scientists, when turning to a model-organism to help answer genetic questions that cannot be easily addressed in humans, often chose the zebrafish. However, the current screening process in zebrafish involves mostly counting the survival rate, hatching and developmental abnormalities etc. through visual examination of each embryo and/or larvae under a dissecting microscope. Such process is time-consuming, labor-intensive and has limitations on data acquisition as well as statistics analysis. Researchers have now successfully demonstrated two high content imaging platforms to enhance the ability to screen the toxicological effects of nanoparticles in zebrafish embryos.

Posted: Sep 9th, 2011

Personal nanoparticle respiratory deposition sampler streamlines exposure assessment

nanoparticle_respiratory_samplerUntil more information becomes available on the mechanisms underlying nanomaterial toxicity, it is uncertain what measurement technique should be used to monitor exposures in the workplace. Many of the sampling techniques that are available for measuring airborne nano aerosols vary in complexity but can provide useful information for evaluating occupational exposures with respect to particle size, mass, surface area, number concentration, and composition. Unfortunately, relatively few of these techniques are readily applicable to routine exposure monitoring. That's why researchers have now developed a unique new sampler design that collects nanoparticles separately from larger particles in a way that mimics the respiratory system.

Posted: Aug 4th, 2011

Conflicting risk data complicates the use of carbon nanotubes as neural interfaces

neuron_with_carbon_nanotubeThere is a growing body of research on using carbon nanotubes (CNTs) and other nanomaterials in neural engineering. Scientists are already exploring the feasibility of using CNTs to probe neural activity. With this research comes the need to develop a unified approach when assessing the toxicity of CNT in neurons. However, a complex picture emerges from the reported data: is it feasible to develop CNT-based devices as drug delivery vectors? Ultimately, are soluble CNT neurotoxic, and, if yes, to what degree? Given the often conflicting results of research reports on the biocompatibility of soluble CNT when administered to neurons in the central nervous system, a review article helps to clarify which aspects (technical or methodological) of these studies may be responsible for their heterogeneous conclusions.

Posted: Jul 14th, 2011

New study reveals molecular mechanism of carbon nanotubes' role in arterial thrombosis

blood_plateletsBlood platelets are the structural and chemical foundation of blood clotting and they play a vital role in minor injuries when coagulation prevents the loss of blood at the injury site. If the proper function of these platelets gets disturbed, blood clotting can lead to thrombosis, which is a leading cause of death and disability in the developed world. In view of the rapid development of nanotechnology, the impact of the newly engineered nanomaterials as an additional thrombosis risk factor is not yet known but should not be underestimated. In fact, it has been reported that carbon nanotubes induce platelet aggregation and potentiate arterial thrombosis in animal model. However, a mechanism of thrombogenic effects of carbon nanotubes was not known. Researchers have now shown that show the molecular mechanism of carbon nanotubes' induced platelets activation.

Posted: Jul 7th, 2011

Why we don't need a regulatory definition for nanomaterials

regulationsEngineered nanomaterials present regulators with a conundrum - there is a gut feeling that these materials present a new regulatory challenge, yet the nature and resolution of this challenge remains elusive. But as the debate over the regulation of nanomaterials continues, there are worrying signs that discussions are being driven less by the science of how these materials might cause harm, and more by the politics of confusion and uncertainty. Yet the more we learn about how materials interact with biology, the less clear it becomes where the boundaries of this class of materials called "nanomaterials" lie, or even whether this is a legitimate class of material at all from a regulatory perspective.

Posted: Apr 15th, 2011