Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 321 - 328 of 387 in category Fabrication Technologies and Devices (newest first):

 

Nanowire growth through ion beams

Nanowires are expected to play an important role in the emerging fields of nanoelectronics and nanooptics. In particular, the permanently growing complexity of integrated circuit designs requires a further reduction of the size of IC components that nanowires could facilitate. Nanowires are also a possible candidate for future functional nanostructures in plasmonic devices, i.e. for information (light) propagation and manipulation below the optical diffraction limit. For these purposes, cobalt disilicide (CoSi2) is a very promising contact material due to its extremely useful properties such as low resistance, its metallic behavior, its low lattice mismatch to Si of only -1.2%. the plasmon wavelength of 1.2 micrometer, and its compatibility with modern silicon technology. Many efforts have been made to fabricate silicide nanowires employing the bottom-up approach without elaborate microlithography. Researchers in Germany now have demonstrated a promising technique that allows the defect-induced formation and placing of cobalt disilicide nanowires by focused ion beam synthesis in silicon directly where it is needed.

Posted: Jan 22nd, 2007

Designing new materials with nanostructures as building blocks

Novel and robust networks, tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks remains a significant challenge in nanotechnology. The most suitable building blocks for assembling such networks are nanoparticle clusters, nanotubes and nanowires. Unfortunately, little is known regarding the different ways networks can be created and their physicochemical properties as a function of their architecture. It is expected that, when 1D nanostructures are connected covalently, the resulting assemblies possess mechanical, electronic, and porosity properties that are strikingly different from those of the isolated 1D blocks. In extensive theoretical studies, researchers now have shown that the properties of 2D and 3D networks built from 1D units are dictated by the specific architecture of these arrays. Specifically, they demonstrate that one could join nanotubes and make supernetworks that exhibit different properties when compared to the individual building blocks (i.e. the nanotubes). Besides the unique and unusual mechanical and electronic properties, the porosity of these systems makes them good candidates for exploring novel catalysts, sensors, filters, or molecular storage properties. The crystalline 2D and 3D networks are also expected to present unusual optical properties, in particular when the pore periodicity approaches the wavelength of different light sources, such as optical photonic crystals.

Posted: Jan 4th, 2007

Bronze Age technique works just fine in the nanotechnology era

With its historic development tracing back to the Bronze Age, welding serves modern industry in broad areas such as construction, manufacturing, and engineering. Spot welding,a type of resistance welding used to weld various sheet metals, was originally developed in the early 1900s. The process uses two shaped copper alloy electrodes to concentrate welding current and force between the materials to be welded. The result is a small "spot" that is quickly heated to the melting point, forming a nugget of welded metal after the current is removed. Perhaps the most common application of spot welding is in the automobile industry, where it is used almost universally to weld the sheet metal forming a car. Spot welders can also be completely automated, and many of the industrial robots found on assembly lines are spot welders. With the continuing development of bottom-up nanotechnology fabrication processes, with self-assembly at its core, spot welding may likewise play an important role in interconnecting carbon nanotubes (CNTs), nanowires, nanobelts, nanohelixes, and other nanomaterials and structures for the assembly of nanoelectronics and nanoelectromechanical systems (NEMS).

Posted: Jan 2nd, 2007

Quite unexpectedly, gold, silver and copper can produce single-walled carbon nanotubes

The controlled synthesis of single-walled carbon nanotubes (SWCNTs), which generally requires a nanoscale catalyst metal, is crucial for their application to nanotechnology. In the chemical vapor deposition (CVD) of SWCNTs, the known effective catalyst species are the iron-family elements iron, cobalt, and nickel, with which a high SWCNT yield can be obtained. However, gold, silver, and copper have never been reported to produce SWCNTs. It is well known that iron, cobalt, and nickel have the catalytic function of graphite formation but that gold does not. The difference between the iron-family metals and gold is that the binding energy of carbon is much larger for the iron-family metals. Carbon atoms cannot stay on gold long enough to form a graphitic network. Thus, it is rather natural for iron, cobalt, and nickel to generate SWCNTs, but it is totally unexpected that gold would produce them too. The same picture is applicable to silver and copper. Nevertheless, researchers in Japan succeeded in developing a nanoparticle activation method that shows that even gold, silver, and copper act as efficient catalysts for SWCNT synthesis. These non-magnetic catalysts could provide new routes for controlling the growth of SWCNTs.

Posted: Dec 6th, 2006

Focused ion beam milling of nanocavities could lead to photon-on-demand light sources

Artificial opals are gemstones that are of considerable scientific and technological interest as photonic crystals, as components of light sources, solar cells, and chemical sensors. They are conveniently made from periodic stackings of nanospheres. It would be exciting if one could fabricate optical cavities in these photonic crystals by removing, or adding high dielectric material to a single unit cell in the structure. These optical cavities would localize light that potentially enables the fabrication of high-resolution miniature on-chip sensors, or even qubits for quantum computers. Previously, such controlled modification of the nanostructure of a single colloid in an opal has not been achieved. Now, researchers in The Netherlands developed a method for realizing both single and arrays of material cavities, or defects, in individual colloids on the surface of silicon dioxide artificial opals by a focused ion beam milling technique. This research could ultimately lead to the fabrication of a photon-on-demand light source.

Posted: Nov 30th, 2006

Green nanotechnology: Synthesizing nanoparticles with sunlight

While the first reported fullerenes and nanotube structures were composed of carbon, it was soon recognized that a plethora of comparable inorganic candidates should also exist. A rich assortment of IF (inorganic fullerene-like structures, or IF for short) nanostructures have been synthesized, and are finding practical uses in tribology, photonics, batteries, and catalysis. On such inorganic molecule that can achieve fullerene-like nanostructures, cesium oxide, is particularly useful for a multitude of applications in photoemissive systems. Unfortunately, it is extremely reactive in the ambient atmosphere, so its production and handling require high vacuum and very pure inert conditions; which translates into problematic and expensive manufacturing and handling, which in turn limits its technological scope and device lifetime. In their quest for a relatively uncomplicated high-yield synthesis method for chemically stable cesium oxide IFs, scientists succeeded in exploiting highly concentrated solar radiation (ultrabright incoherent light) toward that end. This resulted in a simple, inexpensive, and reproducible photothermal procedure for synthesizing IF nanoparticles.

Posted: Nov 29th, 2006

Antibacterial wallpaper through nanotechnology

Zinc oxide (ZnO) is considered a workhorse of technological development exhibiting excellent electrical, optical, and chemical properties with a broad range of applications as semiconductors, in optical devices, piezoelectric devices, surface acoustic wave devices, sensors, transparent electrodes, solar cells, antibacterial activity etc. Thin films or nanoscale coating of ZnO nanoparticles on suitable substrates are viewed with great interest for their potential applications as substrates for functional coating, printing, UV inks, e-print, optical communication (security-papers), protection, barriers, portable energy, sensors, photocatalytic wallpaper with antibacterial activity etc. Various methods like chemical, thermal, spin coating, spray pyrolysis, pulsed laser deposition have been used for thin film formation but they are limited to solid supports such as metal, metal oxides, glass or other thermally stable substrates. Coating of ZnO nanoparticles on thermolabile surfaces is scarce and coating on paper was yet to be reported. Paper as a substrate is an economic alternative for technological applications having desired portability and flexibility. Researchers from the National Tsing Hua University in Taiwan found a way of coating paper with ZnO nanoparticles using ultrasound.

Posted: Nov 16th, 2006

Lithography-free formation of nanopores in low-cost plastic materials

Synthetic nanopores are promising biosensors, possibly as a robust and versatile replacement for their biological counterparts in characterizing DNA, RNA, and polypeptides. In the past few years since their first introduction, synthetic nanopores have been found in a wide range of biological and nonbiological applications, including characterization of double-stranded DNA length and folding, detection of immune complexes, profiling of optical traps, and basic studies of nanoscale ion transport mechanisms. Given the broad technological importance of synthetic nanopores, it is highly desirable to develop a reliable technique for fabricating these devices using low-cost materials. Researchers at Brown University now report a systematic study of nanopore formation in a plastics system. They also developed a lithography-free technique for fabricating nanopores with biomolecular sensing capabilities.

Posted: Nov 15th, 2006