Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 65 - 72 of 1770 in category (newest first):

 

Ultraflat transfer method for graphene surface force balance

grapheneThe surface force balance (SFB) provides measurements of surface and colloidal forces in liquids such as electrostatic surface forces, van der Waals forces, and solvation forces. Until now, the SFB required mica sheets as the substrate for measurements. This was the only material available in an atomically smooth state over centimeter-scale areas as well as being optically transparent as required for the optical interferometry. By replacing the mica sheets with graphene, electrically conducting and atomically smooth surfaces for the measurement of surface forces have now been created.

Posted: Dec 10th, 2014

Thermotherapy for pain management with a smart thermal patch

thermotherapyAdvanced health monitoring systems and healthcare devices will become an integral part of the Internet of Things. As a harbinger of things to come, nanotechnology researchers have now demonstrated a smart thermal patch which can be used for thermotherapy for pain management in a user interactive way. To fabricate the device, the researchers used CMOS technology to devise a silicon based smart thermal patch which is flexible and stretchable.

Posted: Dec 9th, 2014

Leverage nanotechnology to speed up the energy transition

energy_transitionDrawing attention to the possible implications of extreme weather does not answer the question what we can really do about the risks of climate change, and who will drive fresh solutions. Science - including nanotechnology - is an important part of the answer, and we need human ingenuity to step forward. To accelerate the process and help to push the boundaries of usable energy solutions, the Exergeia Project backs potentially groundbreaking inventions and innovations in all fields of alternative energy.

Posted: Dec 5th, 2014

Unlocking the potential of graphenes - functionalisation via plasma

plasma_reactorGraphene's properties appear to have almost limitless application potential, ranging from composite materials for the aerospace industry, next-generation batteries and supercapacitors, flexible displays and optical electronics and biosensors for applications in healthcare and medical devices. So why hasn't graphene, with the potential to vastly outperform the majority of currently available materials, been integrated into everything from wristwatches to ocean liners?

Posted: Dec 4th, 2014

European Parliament agrees on moratorium on nanofoods and on a new legal definition of engineered nanomaterials

legalA majority of the members of the Environmental, Public Health and Food Safety (EHS) committee of the European Parliament approved several amendments to the draft regulation on novel foods, including one imposing a moratorium on novel foods containing nanomaterials. The EHS committee's amendments to the Commission's proposal show that the European Parliament and the European Commission clearly have two different approaches towards the regulation of nanotechnologies.

Posted: Dec 3rd, 2014

Superstable copper nanowire stretchable conductors

flexible_electronicsThe use of copper as an alternative electrode material to silver would reduce the cost of conductive inks. Nevertheless, copper nanowire conductors face a serious bottleneck for future practical use in flexible and stretchable optoelectronics: although they are nearly as conductive as silver, this conductivity is not stable. Researchers have now demonstrated conductive copper nanowire elastomer composites with ultrahigh performance stability against oxidation, bending, stretching, and twisting. This material offers a promising alternative as electrodes for flexible and stretchable optoelectronics.

Posted: Dec 2nd, 2014

3D printed nanostructures made entirely of graphene

nanowiresThe successful implementation of graphene-based devices invariably requires the precise patterning of graphene sheets at both the micrometer and nanometer scale. Finding the ideal technique to achieve the desired graphene patterning remains a major challenge. Researchers have now demonstrated 3D printed nanostructures composed entirely of graphene using a new 3D printing technique. The method exploits a size-controllable liquid meniscus to fabricate 3D reduced graphene oxide nanowires.

Posted: Nov 27th, 2014

Protecting satellite electronics with reinforced carbon nanotube films

nanocomposite_filmThe space industry has a strong requirement to develop flexible electrostatic discharge protection layers for the exterior cover of satellites in order to protect the electronics of the spacecraft. A new study explores carbon nanotube-polyimide composite materials as a flexible alternative for the currently used indium tin oxide (ITO) coating, which is brittle and suffers from severe degradation of the electrical conductance due to fracture of the coating upon bending.

Posted: Nov 26th, 2014