Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Showing Spotlights 65 - 72 of 1604 in category (newest first):

 

Smart cancer nanotheranostics

nanotheranosticsTheranostics - a combination of the words therapeutics and diagnostics - describes a treatment platform that combines a diagnostic test with targeted therapy based on the test results, i.e. a step towards personalized medicine. Theranostic nanomedicine has the potential for simultaneous and real time monitoring of drug delivery, trafficking of drug and therapeutic responses. Researchers have now demonstrated for the first time a MRI-visual order-disorder micellar nanostructures for smart cancer theranostics.

Posted: Nov 12th, 2013

Wearable textile battery can be recharged by sunlight

flexible_solar_cellGoing hand in hand with the development of wearable electronic textiles, researchers are also pushing the development of wearable and flexible energy storage to power those e-textiles. Researchers have now developed wearable textile batteries that can be integrated with flexible solar cells and thus be recharged by solar energy. The team found unconventional materials for all of the key battery components and integrated them into a fully wearable battery.

Posted: Nov 8th, 2013

Superlubricity on the macroscale

carbon_nanotubeFriction is present in numerous physical phenomena occurring at all length scale. About 1/3 of the world's primary energy is dissipated in mechanical friction and 80% of machinery components' failure is caused by wear. Friction and wear will also become bottlenecks for micro-/nano-mechanical systems (MEMS and NEMS) featured with sliding components. Superlubricity, a phenomenon where the friction almost vanishes between two solid surfaces, will be the key to solve these problems and researchers now report a breakthrough in macroscale superlubricity.

Posted: Nov 7th, 2013

A new type of single-molecule machine - the electric revolving door

single-molecule_motorMost molecular machines operate by using chemical reactions, which lead to irreversible damage to the machine molecules themselves over time. Moreover, in most scenarios, the measurement and control of the molecular machine status are separated into distinct steps, e.g., the molecular motion is controlled by a chemical reaction, but is then detected by spectroscopy or electrochemistry. Researchers have now proposed a new type of molecular machine without chemical reactions and where the measurement/control mechanisms are combined into one.

Posted: Nov 6th, 2013

Magnetic graphene to find applications in spintronics

magnetic_grapheneOne item that so far has been missing from graphene's impressive list of physical properties is magnetism. In its pristine state, graphene exhibits no signs of the conventional magnetism usually associated with such materials as iron or nickel. So far, no reports that provide comprehensive evidence for either macro- or nanoscale magnetic phenomena for the ferromagnetism of carbon nanostructures in chemically functionalized graphene structures have appeared in the literature. Researchers have now filled this gap.

Posted: Nov 5th, 2013

Selecting nanopropellers from randomness (w/video)

propellerSteerable nanodevices are envisioned for a multitude of applications. For example, magnetic nanodevices can be controlled via external magnetic fields. So far, scientist mainly have used costly synthetic routes to design and synthesize such devices. Now, though, a team of scientists has shown that a very simple route based on solution chemistry can also lead to such steerable machines. So far, most nano-and microscale propeller designs have been based on a biomimetic approach. The new approach is based on random aggregates.

Posted: Nov 4th, 2013

Auto-switchable graphene bio-interface with a 'zipper' nanoarchitecture

graphene_interfaceMaterial science is having a renewed influence on bioelectronics design beyond the incorporation of new functional nanomaterials. This newly established cooperation opens new windows for bioelectronics research, especially for fabricating flexible and smart devices. Recent advances in graphene research provide various possibilities to enhance performance characteristics and current approaches to design new bio-devices. Especially, smart and flexible bioelectronics on graphene has emerged as a new frontier in this area.

Posted: Oct 31st, 2013

In situ monitoring catalytic processes for ultrahigh purity carbon nanotubes

carbon_nanotubesCatalysis is one of the most important routines for the production of nanomaterials. The catalysts that are used in these processes play a vital role for the controllable fabrication of nanomaterials with anticipated structures. However, carbon nanotubes grown through routine catalytic chemical vapor deposition have always shown non-carbon impurities. Effective purification of SWCNTs has therefore attracted significant attention from researchers around the world in order to improve the performance of carbon nanotubes, especially in energy storage systems.

Posted: Oct 30th, 2013