Novel method for studying the structure of hydrogenated graphene

(Nanowerk News) Researchers from Lorestan University presented a novel and economical method for studying the structure of hydrogenated graphene ("Electron energy loss spectrum of graphane from first-principles calculations").
This computational method reduces the need for the use of expensive and costly devices and decreases the time of tests.
Electron energy spectroscopy is a very accurate and well-known device for the determination of characteristics such as structure, electron, and chemical bonds in materials. The properties are measured with electron microscopes in advanced laboratories across the world. Electron microscope is one of the most expensive yet most accurate devices for studying internal structure of materials. By using calculations and by spending the least possible cost, the properties of the new structure of hydrogenated graphene were studied in this research, and its similarities and differences with graphite and graphene were analyzed.
The present study helps the characterization of electron properties of hydrogenated graphene. Results of the research can be used in nanoelectronic industry and electronic devices, including the production of transistors. In addition, it provides cost-effective method for the characterization of hydrogenated graphene and it reduces costs due to the use of physical simulation instead of the implementation of the expensive electron microscopy device.
Mehrdad Dastani, one of the researchers, explained about the research, and said, “Despite its interesting but different characteristics, graphene layer cannot be used in the production of field effect transistors due to its high conductivity and high mobility of charge carriers inside it. Taking into account the results and descriptions presented in this research, the production of hydrogenated graphene transistors will be achievable in a faster and more precise manner. Before this study, this type of spectroscopy on hydrogenated graphene and its comparison to graphite and graphene had not been carried out.”
Source: INIC