Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Mar 30, 2015

Graphene field-effect transistor is key to faster DNA sequencing

(Nanowerk News) Graphene looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research and testing.
Led by Dr Jiri Cervenka and PhD candidate Nikolai Dontschuk from the University of Melbourne, the study also included scientists from the Australian Synchrotron and La Trobe University and is published in Nature Communications ("A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases").
The Australian researchers have shown that graphene- a one-atom thick sheet of hexagonally arranged carbon, shaped like chicken wire - can detect the four nucleobases that make up DNA (cytosine, guanine, adenine and thymine).
A unique combination of the four nucleobases makes up the individual DNA sequence of a gene. Currently, DNA sequencing is a fundamental tool for medical diagnostics, forensic testing and medical and biological research.
The use of graphene to electrically sequence DNA promises to improve the speed, throughput, reliability and accuracy whilst reducing the price compared to current techniques said Nikolai Dontschuk from the University of Melbourne.
“We found that each nucleobase influenced the electronic structure of graphene in a measurably different way,” said Mr Dontschuk.
“When used in conjunction with a nanopore (a tiny hole), a single DNA molecule would pass through the graphene-based electrical sensor - like a single string of beads passing through one section of tiny chicken wire- enabling real-time, high-throughput sequencing of a single DNA molecule.”
The research team conducted the first experiments to combine in situ electrical measurements of graphene-based field effect transistors (GFET) with photoemission spectroscopy at the soft x-ray spectroscopy beamline at the Synchrotron.
After comparing the experimental and synchrotron results, the team predicted that single-molecule sensing of guanine, cytosine and thymine by bulk graphene devices could be achieved.
Source: University of Melbourne
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: