Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Oct 15, 2015

New nanotechnology motor mimics two wheels on an axle

(Nanowerk News) University of Groningen scientists led by Professor of Organic Chemistry Ben Feringa have designed a new type of molecular motor. In contrast to previous designs, this molecule is symmetrical. It comprises two parts, which are connected by a central ‘axle’ and rotate in opposite directions, just like the wheels of a car. The results, which were published in the journal Nature Chemistry ("Unidirectional rotary motion in achiral molecular motors"), would be ideal for nano transport systems.
It may sound odd, but from the perspective of the driver, the wheels on the left and right hand side of a car turn in opposite directions. When a car drives forward, the left front wheel turns clockwise and the right front wheel anti-clockwise. This is also the basic design of a new type of molecular motor from the lab of Ben Feringa, the creator of the first light-driven molecular motor back in 1999.
molecular motor
(Illustration: Feringa Group)
‘If you want a molecular motor to be of any use, you need to be able to control the rotary motion’, says Feringa. Up to now, this was done by using what are known as chiral molecules. These consist of two mirror-image parts, like a left and right hand, which are connected at a central point. ‘These motor molecules are therefore asymmetrical, and this difference between the two halves dictates the way it turns’, Feringa explains.
achiral molecular motors
(Illustration: Feringa Group)
In Nature Chemistry, Feringa’s group presents the first symmetrical motor molecule with controlled rotary motion. Feringa: ‘This symmetrical motor, which is light-driven just like our other molecular motors, has two rotation axles and two rotating parts.’ The axles are attached to a central part, which is also symmetrical, with the exception of one carbon atom. This atom has two different chemical groups attached to it, which force the rotating parts to turn in opposite directions, as seen from the central part.
Just like a car, this means that the two ‘wheels’ make the molecule move in one direction. ‘This discovery has fantastic implications for realizing autonomous motion on the nanoscale, such as transport over a nano road in a predetermined direction’, Feringa explains. ‘We are now working in our lab to make this type of nano transport a reality.’
Source: University of Groningen
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: