Open menu
Nanowerk

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Nanosheets may produce more durable and longer lasting lithium-ion batteries

(Nanowerk News) Lithium-ion batteries are used to power many things from mobile phones, laptops, tablets to electric cars. But they have some drawbacks, including limited energy storage, low durability and long charging time.
Now, researchers at the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR have developed a new way of producing more durable and longer lasting lithium-ion batteries. This finding was reported today in Advanced Materials ("Generalized Synthesis of Metal Oxide Nanosheets and Their Application as Li-Ion Battery Anodes").
Led by IBN Executive Director Professor Jackie Y. Ying, the researchers invented a generalized method of producing anode materials for lithium-ion batteries. The anodes are made from ultrathin metal oxide nanosheets, which are ultrathin, two-dimensional materials with excellent electrochemical and mechanical properties.
metal oxide nanosheets
Metal oxide nanosheets.
These nanosheets (image above) are 50,000 times thinner than a sheet of paper, allowing faster charging of power compared to current battery technology. The wide surface area of the nanosheets makes better contact with the electrolyte, thus increasing the storage capacity. The material is also highly durable and does not break easily, which improves the battery shelf life. Existing methods of making metal oxide nanosheets are less time-consuming and difficult to scale up.
The IBN researchers came up with a simpler and faster way to synthesize metal oxide nanosheets using graphene oxide. Graphene oxide is a 2D carbon material with chemical reactivity that facilities the growth of metal oxides on its surface.
Graphene oxide was used as the template to grow metal oxides into nanosheet structures via a simple mixing process, followed by heat treatment. The researchers were able to synthesize a wide variety of metal oxides as nanosheets, with control over the composition and properties.
The new technique takes one day to produce the nanosheets, compared to one week for previously reported methods. It does not require the use of a pressure chamber and has just two steps in the synthesis process, making the nanosheets easy to manufacture on a large scale.
Tests showed that the nanosheets produced using this generalized approach have excellent lithium-ion battery anode performance, with some materials lasting three times longer than graphite anodes used in current batteries.
“Our nanosheets have shown great promise for use as lithium-ion anodes. This new method could be the next step toward the development of metal oxide nanosheets for high performance lithium-ion batteries. It can also be used to advance other applications in energy storage, catalysis and sensors,” said Prof Ying.
Source: A*STAR
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
These articles might interest you as well: