Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 51 - 75 of 126 for research and community organizations starting with S:

 
Spintec is a research laboratory aiming at bridging fundamental research and product development in the exciting field of spin electronics.
The university offers a 2-year and a 5-year program.
The Sri Lanka Institute of Nanotechnology envisions being the leading Research and Innovation platform for Sustainable Nanotechnology in Asia. Thereby transforming Sri Lanka into a strong Nanotechnology-focused nation.
Srinivas Institute of Technology, a pioneer in the field of engineering education, had started B.E. in Nano Technology in the academic year 2013-2014, affiliated to Visvesvaraya Technological University, Belgaum.
A 2-year program conducted at the Srinivas Centre for Nano Science and Technology.
The group is involved in materials innovation for enabling new device structures and concepts. They study wide range of electronic materials at nanoscale to understand importance of confinement in all geometries. Exotic schemes of maneuvering, processing, and engineering materials at low-dimensions are explored for new functionalities and applications.
The four year programme is designed to help prepare students from a broad range of disciplines for careers or graduate study in fields involving nanotechnology. These fields cover a spectrum ranging from medicine (drug delivery) and catalysis to surface/bulk chemistry and controlling even at the atomic/molecular scale to quantum computing. The students are consistently encouraged to develop this interdisciplinary approach to science and engineering. The course prepares the exciting career opportunities in a variety of diverse fields to the students.
The department deals with the latest developments in the various disciplines such as Material Science, Micro(Nano) electronics, Manufacturing of miniaturized electronic and optical devices, quantum computing, Computational Nanotechnology, Nanomechanical engineering & sensors, Nanolithography & Nanointerface engineering, and Nanomagnetism.
The program imparts several courses in Material Science, Thermodynamics, Mathematical physics, Quantum Physics, Nanochemistry initially. Later on, it provides the basic aspects of Instrumentation techniques and the advanced courses such as Thin Film Technology and Nanophotonics. At the end of programe, the students are expected to do a well-qualified project. This program is intended to enable the students' interests and provide the basic research activities for deeper insights in both theoretical and experimental aspects.
Professor Wang and his group are engaged in the research of magnetic nanotechnology, biosensors, spintronics, integrated inductors and information storage. They use modern thin-film growth techniques and lithography to engineer new electromagnetic materials and devices and to study their behavior at nanoscale and at very high frequencies. His group is investigating magnetic nanoparticles, high saturation soft magnetic materials, giant magnetoresistance spin valves, magnetic tunnel junctions, and spin electronic materials, with applications in cancer nanotechnology, in vitro diagnostics, rapid radiation triage, spin-based information processing, efficient energy conversion and storage, and extremely high-density magnetic recording.
The Stanford Nanocharacterization Laboratory (SNL), housed within the Geballe Laboratory for Advanced Materials , is being set up to provide modern facilities for the characterization of material
The Stanford Nanoelectronics Group was founded in September 2004 by Professor H.-S. Philip Wong. The group's research interests are in nanoscale science and technology, semiconductor technology, solid state devices, and electronic imaging. The group is interested in exploring new materials, novel fabrication techniques, and novel device concepts for future nanoelectronic systems.
The goal of the Stanford Nanofabrication Facility is to provide researchers with effective and efficient access to advanced nanofabrication equipment and expertise
The research at Bao's laboratory at Stanford's Department of Chemical Engineering are centered on using chemical and chemical engineering approaches towards the formation of functional nano- and microstructures with novel electronic and photonic properties.
The CCNE's goal is goal is to develop and validate nanotechnology so that one will eventually be able to predict which patients will likely respond to a specific anti-cancer therapy and to monitor their response to therapy.
The mission of the Center is to stimulate research at Stanford in the area of magnetic nanotechnology, magnetic sensing, and information storage materials, to facilitate collaboration between Stanford scientists and their industrial colleagues, to train well-rounded and highly skilled graduate students, and to develop curricular offerings in the relevant subjects.
Stanford University and IBM Corporation, with funding from the National Science Foundation, have founded the Center for Probing the Nanoscale to achieve these principal goals: To develop novel probes that dramatically improve our capability to observe, manipulate, and control nanoscale objects and phenomena; To educate the next generation of scientists and engineers regarding the theory and practice of these probes; To apply these novel probes to answer fundamental questions and to shed light on technologically relevant issues.
The research of the Dai Laboratory at Stanford interfaces with chemistry, physics, materials science and biophysics. Ongoing projects include developing new synthetic routes to ordered nanomaterial architectures; electrical, mechanical, electromechanical and electrochemical characterizations at the nanoscale; and probing the real-space structures and functions of biological molecules.
The group is interested in the theoretical and computational research of photonic crystals, micro-photonic and nano-photonic structures, as well as solid state devices.
A biophysics lab that investigates biological spatial organization on the mesoscale (10 nm - 10 microns) and the role of mechanical cues in cellular decision-making. Current research directions include tissue mechanobiology, the organization of the DNA inside the nucleus, and single-molecule measurements of transport through biological pores and channels.
The Micro/Nano Systems and Technology Graduate Certificate offers a plan of study that focuses on the miniaturization technologies that have important roles in materials, mechanical, and biomedical engineering practice, in addition to being the foundation for information technology.
Single-molecule nanophotonics at Stanford University
The Molecular Imaging Program at Stanford (MIPS) was established as an inter-disciplinary program to bring together scientists and physicians who share a common interest in developing and using state-of-the-art imaging technology and developing molecular imaging assays for studying intact biological systems.
The Stanford Nanoelectronics Group was founded in September 2004 by Professor H.-S. Philip Wong. The group's research interests are in nanoscale science and technology, semiconductor technology, solid state devices, and electronic imaging.
Research areas: nanophotonics, quantum optics, nonlinear optics, optoelectronics