Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 76 - 100 of 111 for research and community organizations starting with M:

 
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale.  Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art.  They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Research in the Jarillo-Herrero group lies in the area of experimental condensed matter physics, in particular quantum electronic transport in novel low dimensional nanomaterials such as graphene and carbon nanotubes.
Their research is focused on fabrication of devices that exploit the quantum-mechanical properties of materials. Because superconductors provide an ideal medium for studying quantum mechanics in the solid state, they focus on superconductive materials.
A cross-disciplinary research lab at MIT inventing self-assembly and programmable material technologies aimed at reimagining construction, manufacturing, product assembly and performance.
The SNL is the premier laboratory in the world for research in interference lithography and diffraction grating fabrication.
The Strano group at MIT is interested in understanding the chemical and physical interactions that govern our ability to manipulate nanotube and nanoparticle systems, particularly those that are carbon based, for desired applications.
This website is a portal to research in nano- and micro-scale technologies within the MIT School of Engineering. A School-wide initiative, Tiny Technologies, or 'TT,' seeks, through advanced, interdisciplinary research, to create new knowledge and novel technologies in the fast-moving fields of nano- and micro-scale technologies.
The central goals of the NCI funded MIT-Harvard CCNE are to rapidly translate recent advances in nanotechnology for use in the diagnosis and treatment of cancer, and to develop the next generation of nanomaterials for this purpose.
This inter-departmental Center brings together, MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies. The Center explores advanced technologies and strategies that enable graphene-based materials, devices and systems to provide discriminating or break-through capabilities for a variety of system applications ranging from energy generation and smart fabrics and materials, to RF communications and sensing.
Performs broadly-based research and development in nanotechnology. A unique strength of the group's technical efforts is the focus on systems engineering starting at the molecular scale.
The aims of this MNT Europe are to integrate the Micro and Nano Technology (MNT) research capabilities in Europe into the form of a distributed platform for research and development.
As part of Lippo Medical and Health Program, that includes the Faculty of Medicine Pelita Harapan University, Siloam Hospitals and the Mochtar Riady Comprehensive Cancer Center (MRCCC), the Mochtar Riady Institute for Nanotechnology (MRIN) was established in 2006 to support cancer research in Indonesia using both genomic and proteomic approaches.
A three-year project undertaken by an international consortium of researchers covering 3 continents which could help bring to mass market organic light emitting devices (OLEDs), which could have far reaching technological implications and cut the cost of lighting by billion of pounds each year. The Modecom consortium will work on the molecular level and also look at the workings of the device as a whole.
Modelling for Nanotechnology (M4nano) is a WEB-based initiative leaded by four Spanish Institutions: Phantoms Foundation, Parque Cientifico de Madrid (PCM), Universidad Autonoma de Madrid (UAM) and Universidad Complutense to maintain a systematic flow of information among research groups and therefore avoid that research efforts in Nanomodelling remain fragmented.
The focus of MODERN (MOdeling and DEsign of Reliable, process variation-aware Nanoelectronic devices, circuits and systems) is to develop new design tools and methodology for transistors and circuits at the nanoscale which will enable the manufacturing of reliable, low cost, low electromagnetic interference, high-yield complex silicon chips and corresponding products using unreliable and variable devices.
Molecular Frontiers is a global effort to promote the understanding and appreciation of molecular science in society.
A chapter of the National Space Society, the group's mission is to promote nanotechnology as a means to facilitate the settlement of space.
The MONA project (Merging Optics and Nanotechnologies) has been launched in June 2005 by the European Commission in order to bridge the gap between photonics and nanotechnologies. The ultimate objective of the project is the development of a European roadmap for photonics and nanotechnologies.
Monash University is recognized as one of the leading centres of nanoscience in Australia, with world-class capabilities in nanoscale materials science and engineering and nanobiotechnology.
Research includes Micro/Nano precision manipulation.
The Center for Bio-Inspired Nanomaterials (CBIN) at Montana State University is a multidisciplinary research and education center focused on utilizing and expanding our fundamental understanding of the formation and hierarchical construction of biological materials such as viruses, cells, and biominerals (bones, teeth, seashells etc.).
Conducts nanotechnology research in areas that support the comapny's business and their Seamless Mobility vision.
Nanotechnology at the Hungarian Academy of Sciences
The CARBIO partners apply a multidisciplinary approach to exploit the potential of multi-functional carbon nanotubes (CNT) for biomedical applications, in particular to act as magnetic nano-heaters, drug-carrier systems and sensors which allow a diagnostic and therapeutic usage on a cellular level.
The goal of the MultiPlat project is to develop biomimetic proton conductive membranes with nanometer thickness (nanomembranes) through convergence of the number of fields. The primary application of this multipurpose nanotechnological platform is the next generation of fuel cells where it will replace the prevailing evolutionary modifications of the state of the art solutions.
 
 
left arrowBack to Nanotechnology Links Directory