Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 301 - 325 of 1702

 
Research and development in the fields of microelectronics and nanoelectronics, power electronics, mechatronics, automotive electronics, and crystal growth.
Hybrid biological and synthetic particles have been developed which simulate the properties at the cell surfaces. On the surface of these cell-mimetic, i.e. cell-imitating, nanoparticles, membrane proteins are bound in such a way that their biological properties are fully maintained.
Researches coating technologies for nano materials.
Research and development in the areas of Powder technology, Casting technology, Light weight construction, Micro production technology, Functional Printing, Rapid Prototyping, Nanopowder Technology.
Deals with Board Interconnection Technologies (nanowires); Chip Interconnection Technologies (nanoscale structures); Lifetime prediction for nanoscaled materials relies on nanoanalytics (nanodeformation) and nanosimulation.
Micro- and nanostructured solar cell architectures.
Nearly one third of the currently 58 Institutes of the Fraunhofer Gesellschaft is working in the field of nanotechnology
FriMat combines a leading fundamental research program on soft condensed matter and solid state physics with an innovative approach to synthesize novel compounds in order to create and study advanced materials. FriMat is determined to not only focus on the creation of novel materials and promote nanotechnology, but investigates into potential risks associated with nanoparticles, and develops new tools essential in any attempt to sample and characterize nanoparticles in the environment.
The Friedrich Miescher Institute is devoted to fundamental biomedical research. As part of the Novartis Research Foundation and one of the institutes of Novartis Corporate Research, the institute's goal is to exploit new technologies to further the understanding of the basic molecular mechanisms of cells and organisms in health and disease.
The Frontiers consortium is designed on five criteria: individual excellence in science, excellent nanotechnology infrastructure (clean room facilities), proven capability to initiate start-ups on the basis of new technology, outstanding relations with nanotechnology initiatives all over the world and, finally, a proven track record in cooperating with other members of the consortium. Frontiers consists of 192 scientists from 11 different research institutions scattered over Europe.
The objective of the society is to create an opportunity to provide information concerning basic science and applied technology relating to nano carbon based materials such as fullerenes, carbon nanotubes and graphene and to provide an opportunity for members to get together.
The objective of this EU project is the investigation and deliberate steering of supramolecular self-organization using complex molecules at well-defined substrates for the fabrication of functional nanostructures.
(Site in Spanish) The official site of the Argentinean Nanotechnology Foundation.
FUNFOX is a European Commission funded program which will demonstrate the capabilities of photonic crystals (PhC) to provide miniature and improved semiconductor optoelectronic devices needed in metropolitan core and access segments of optical networks.
This MURI project at Georgia Tech is focused on a revolutionary new paradigm for fabricating micro/nanodevices: the synergistic use of genetic engineering, biological replication, and shape-preserving chemical conversion to generate enormous numbers of identical Genetically-Engineered Micro/nanodevices (GEMs) with tailored 3-D shapes, fine (meso-to-nanoscale) features, and chemistries.
The Mason Nanotechnology Initiative opens a space for discussion and planning of activities related to nanoscience and nanotechnology within Mason. The efforts target the development of new academic programs within the university that contain a strong component of subjects in science, mathematics and engineering, which are fundamental to nanoscience and nanotechnology.
The focus of research of this group is the synthesis, study and application of solid-state inorganic materials with technologically significant magnetic, electrical, optical, electrochemical or catalytic properties. Of particular interest are nanoscale (1 - 20 nm diameter) materials.
The CNCF in the School of Materials Science and Engineering, is a multi-user facility. Its mission is to provide the Georgia Tech campus with state-of-the-art tools for performing advanced research on a variety of nanoscale materials.
COPE is a premier national research and educational resource center that creates flexible organic photonic and electronic materials and devices that serve the information technology, telecommunications, energy, and defense sectors. COPE creates the opportunity for disruptive technologies by developing new materials with emergent properties and by providing new paradigms for device design and fabrication.
Since 2001 and the invention of graphene electronics the Georgia Tech epitaxial graphene research team led by Walt de Heer and its collaborators are developing the new field of epitaxial graphene electronics.
Dr. Filler's research group works at the interface of chemical engineering and materials science, emphasizing the atomic-level engineering of nanoscale semiconductors for applications in energy conversion, electronics, and photonics.
The Institute for Electronics and Nanotechnology (IEN) at Georgia Tech was established as an Interdisciplinary Research Institute (IRI) with the goals of providing a central entry point and a central organization to enable interdisciplinary E&N related training, education, and research at Georgia Tech in partnership with outside entities.
The mission of the group is to advance the science and engineering of organic and hybrid nanostructured materials and enable technological innovations for applications in communications, sensing, displays, energy efficient solid-state lighting, and power generation.
The group's research focuses on nanostructured functional materials (NanoFM), including polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanocrystals, hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids. The goal of the research is to understand the fundamentals of these nanostructured materials.
The mission of Prof. Gleb Yushin's group is to develop innovative nanotechnology-driven solutions that would facilitate a cleaner environment, decreased energy consumption, safer and healthier lives for people around the globe, and other benefits to society. The group's current focus is directed towards the synthesis of innovative nanostructured materials for supercapacitors, fuel cells and batteries.