Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 301 - 325 of 2062

 
DINAMICS is a European FP6-funded project that aims to promote the uptake of nanotechnological approaches by developing an integrated costeffective nanobiological sensor for detection of bioterrorism and environmental assays. The prime deliverable is an exploitable lab-on-a-chip device for detection of pathogens in water using on-the-spot recognition and detection based on the nanotechnological assembly of unlabelled DNA.
The DIAMANT team has pioneered the discovery and development of diamond as a uniquely promising material system for solid-state molecular technologies: Diamond has exceptional optical and magnetic properties that are associated with dopant complexes - or 'solid-state molecules' - in the diamond lattice. The DIAMANT project will develop new technologies to enable placement of exactly one atom at a time into a selected location in the diamond lattice with nanometre precision.
The European Union's 7th Framework Programme's collaborative research project FP7-2009-IST-4-248613 DIAMOND - Diagnosis, Error Modelling and Correction for Reliable Systems Design aims at improving the productivity and reliability of semiconductor and electronic systems design in Europe by providing a systematic methodology and an integrated environment for the diagnosis and correction of errors.
Research in the Diederich group at ETH Zurich is structured around four central themes: Molecular recognition in chemistry and biology; Modern medicinal chemistry: molecular recognition studies with biological receptors and X-ray structure-based design of nonpeptidic enzyme inhibitors; Supramolecular nanosystems and nano-patterned surfaces; Advanced materials based on carbon-rich acetylenic molecular architecture.
The objective of the EU project 'Development of diamond intracellular nanoprobes for oncogen transformation dynamics monitoring in living cells' (DINAMO) is to develop the nanodiamond particle (NDP) non-invasive label-free nanotechnology sensing platform for real-time monitoring of 1) biomolecular processes inside (and outside) living cells, as modified by oncogenesis, 2) the kinetics of gene-assisted processes in the cells, in accordance with the Call objectives.
A European project for the devolopment of an integrated platform to assess the risk of nanoparticles.
The new Dresden Center for Nanoanalysis (DCN) will particularly focus on '4D AMASE - 4D Advanced Materials Analysis for Science and Engineering', with the goal to become an internationally visible center of competence as well as a European user facility in the field of solid state and materials analysis.
The BioNanoTechnology research at the School of Biomedical Engineering, Science, and Health Systems at Drexel University (Drexel BIOMED) is focused on bioinformatics, biosensing, bioimaging, tissue engineering, drug delivery, and neuroengineering, which are the main research thrusts of the school.
This interdisciplinary materials science and engineering track provides a strong foundation for nanoscience and nanotechnology and is designed to prepare MSE majors for future interdisciplinary careers, for graduate research programs in materials science, nanotechnology, bioengineering and other disciplines.
The research group of MinJun Kim is experimentally investigating the mechanics of fluids at small scales including the behavior of biological materials in micro- and nanofabricated structures.
The Spanier Group at the MesoMaterials Lab at Drexel uses variable temperature scanning probe microscopy to probe selected physical, electronic, mechanical, magnetic and optical properties of nanostructures.
Research in the Kim Group includes nanofabrication and microfabrication for biological applications, micro- and nanofluidics and bacteria actuation, sensing, and transport at the micro/nanoscale.
Research in the Nanomaterials Group is focused on the fundamental and applied aspects of synthesis and characterization of carbon nanomaterials (nanotubes, nanodiamond and nanoporous carbons), ceramic nanoparticles (whiskers, nanowires, etc) and composites.
On the Physics and Nanotechnology programme students learn how to design and manufacture materials using the smallest components available - atoms and molecules. They can work on the development of optical communications, biosensors, and the energy supply of the future, for example.
The MSc programme in Physics and Nanotechnology covers a wide range of technological, theoretical, and experimental techniques in modern physics. The applications include various topics, such as the development of nanostructured materials with tailor-made electrical, magnetic, optical, mechanical and chemical properties, manufacturing and integration of nano- and micro-components in systems design, modelling of complex biological systems, optical data processing and transfer, and the development of technologies for sourcing, storing, and converting sustainable energy - e.g. fuel cells and hydrogen technology.
The Department of Micro- and Nanotechnology - DTU Nanotech - is a highly esteemed research institution within the field of micro- and nanotechnology. Applied science, innovation strategies and state-of-the-art technology form our core identity as a scientific institution. We encourage technology transfer and technology development through industry collaboration, and industrial PhD students are an integrated part of our PhD programme.
The nanotech aspects of their research deal with in-situ visualization of biomembrane activity; nanometer dimensioned electrodes and fibre optics; self-assembling molecular and polymer materials; biomaterials as linkers for self-assembling molecular electronics, security applications and multiplexed sensing and nanophase biolithography.
Nanoscience and nanotechnology are built upon chemistry and physics. This degree is a solid science degree (physics and chemistry) but with a unique focus on nanoscience and nanotechnology. In the Years 3 and 4 of the degree the student chooses to major in either physics or chemistry, but all students do the nanotechnology modules.
The mission of the Center for Metamaterials and Integrated Plasmonics is to continue to advance the basic understanding of electromagnetic metamaterials, exploring their capabilities and limitations across the electromagnetic spectrum. They want to develop fabrication techniques for metamaterials that may operate in various environments, with a particular emphasis on structures designed for terahertz, telecommunications and optical wavelengths.
The Center for the Environmental Implications of NanoTechnology (CEINT) is dedicated to elucidating the relationship between a vast array of nanomaterials ? from natural, to manufactured, to those produced incidentally by human activities - and their potential environmental exposure, biological effects, and ecological consequences. Headquartered at Duke University, CEINT is a collaboration between Duke, Carnegie Mellon University, Howard University, and Virginia Tech and investigators from the University of Kentucky and Stanford University.
Research topics are: Nanotubes and Nanowires; Cryogenic scanning microscopy; Self-assembled DNA templates; Nanocrystal Single-Electron Transistor
The graduate program is designed to address the need for an interdisciplinary graduate education at Duke in Nanoscience that extends beyond the traditional disciplines and skills that are taught within any existing department.
The Fitzpatrick Center for Photonics and Communications Systems at Duke University's Pratt School of Engineering aims to help turn North Carolina into a photon forest where research and development in photonics can create the kind of technological advance and economic growth found in California's Silicon Valley.
The Liu Laboratory at Duke University pursues research in the field of nanomaterials, synthesizing and studying materials with size of nanometers.
DYNASYNC, short for 'Dynamics in Nano-scale Materials Studied with Synchrotron Radiation', is a Framework Six project. Seven laboratories from Austria, Belgium, France, Germany, Hungary and Poland collaborate in an ambitious specific targeted research project to address size-dependent quantum phenomena on nano-scale both theoretically and experimentally.
 
 
 
left arrowBack to Nanotechnology Links Directory