Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications


Nanotechnology Research Laboratories


(Links listed alphabetically)

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All

Showing results 676 - 700 of 2055

The Laboratory, currently under construction, aims to strengthen the scientific and technological cooperation between Portugal and Spain in the areas of nanotechnologies and nanosciences.
The Laboratory, a fully-owned unit of the Centre National de la Recherche Scientifique (CNRS), carries out its research activities within the general context of the nanosciences, at the cross-roads of quantum optics and electronics, of physics, chemistry and biology, of materials science and device physics.
In past decades, nanostructured materials have shown promise of revolutionizing a number of areas, including theranostic, electronic, and photonic materials. Applications of these fields include yet a wider range of specialities, which can be incorporated into sensor material design. This shall be the focus of the MEAN Lab; fundamental material properties and applications of nanomaterials to sensor design. The MEAN Lab shall span a spectrum of expertise (e.g. - nanomaterials, bionanotechnology, interfacial science, electrochemistry), all of which fall under the umbrella of sensor design.
The Quantum Technology Centre contains state-of-the-art nanofabrication facilities, supported by molecular beam epitaxy reactors for atomic layer-by-layer growth of semiconductor nanostructures and devices. Fabrication techniques available include electron-beam lithography using a dedicated electron-beam writer, plasma processing and thin-film deposition. Electronic structures are measured at temperatures down to 10 mK and below by means of DC, microwave and pulse techniques. Photonic structures are characterized using a variety of specialist (0-17 Tesla) magneto-optics and (4-300 K) spectroscopy techniques, x-ray diffraction, electron microscopy and atomic force microscopy methods.
Research, development, and consulting are the main tasks of the LZH.The close cooperation between production engineers, material scientists, and physicists makes it possible that interdisciplinary solutions are found in all fields of laser applications, including nanotechnology.
The laboratory merges and coordinates Centres of Excellence in the basic research related to the development of micro and nano-devices and sensors for genomics and post-genomics.
Conducts nanotechnology research in various areas and has a number of nanotechnology transfer opportunities.
Conducts nanscience and nanotechnology research in various areas such as nanosensors and nanomaterials.
The Lehigh Emerging Technologies Network (LETN), formerly the Lehigh Nanotech Network (LNN), was founded by Lehigh University in 2004, comprising a diverse group of business, education, government, economic development, and services/consulting members. We bring members together to learn about applications, research, funding opportunities, and educational initiatives, and to advance the understanding, development, and commercialization of novel materials technology. The LETN also supports education and outreach for student development. Membership is open to any company or organization with interest in materials or nanotechnology.
Lehigh's SEM courses were founded by Joe Goldstein in 1970. More than three decades later, the Lehigh Microscopy School is widely recognized as the largest and best in the world.
The centers mission is to identify, promote and engage in strategic areas of research and education in advanced materials and nanotechnology that meet the needs of industry, government and students.
The institute is part of the Leibniz Institute for Solid State and Materials Research.
Chemical nanotechnology that has been highly developed by the INM represents a new dimension in nanoscience, which was dominated by physics for a very long time.
Research ranges from the basic interaction of Fe with C, the deposition of metals films by various methods up to functional devices and applications based on surface acoustic wave (SAW) technology. Furthermore, modern transmission electron microscopy (TEM) is used to image and characterize nano structured materials on a nanometer scale.
The Leibniz Institute for Surface Modification carries out basic and applied research on physical and chemical mechanisms which are important at fabrication and modification of isolating, metallic, semi-conducting and polymeric surface layers. Low-energetic ions, electrons, plasma as well as VUV and UV photons are employed.
The researchers at the IPF work towards understanding the effects of interfaces and the utilization of interface design in material development, in which nanotechnological aspects as well as interfaces to biosystems are of great importance.
The interdisciplinary degree courses in nanotechnology at Leibniz Universität Hannover provide extensive training in the field of nanotechnology. The Faculties of Electrical Engineering and Computer Science, Mechanical Engineering, Mathematics and Physics, and Natural Sciences have combined forces to offer this joint programme.
The interdisciplinary degree courses in nanotechnology at Leibniz Universität Hannover provide extensive training in the field of nanotechnology. The Faculties of Electrical Engineering and Computer Science, Mechanical Engineering, Mathematics and Physics, and Natural Sciences have combined forces to offer this joint programme.
The Kamerlingh Onnes Laboratory has 6 research groups that deal with Atomic and Molecular Conductors, Interface Physics, Magnetic and Superconducting Materials, Quantum Physics of Nanostructured Materials, Quantum Physics and Applications at Ultra Low Temperatures, Granular & Disordered Media, and Physics of Surfaces and Materials.
The Material Physics and Nanotechnology master's programme focuses on the physics of new materials and covers a wide range of materials used in for example semiconductor technology, optoelectronics and biotechnical applications.
A joint enterprise with Imperial College London, the London Centre for Nanotechnology (LCN) has been designed to act as a focus for current interdisciplinary nanoscale materials and device research.
Conducts research in nanomaterials.
Research in the area of physics and chemistry of nanoscale structures built from chemically generated nanoparticles.
CAMD is a high-tech synchrotron research center whose role is to provide equipment, expertise, and infrastructure for research and development in the area of microstructures, microdevices, and recently, nanofabrication.
The core competency of the ‘nanofabrication’ research group is to synthesize variety of nanoparticles, characterize them using X-ray absorption spectroscopy and utilize them to fabricate devices for biomedical applications.
left arrowBack to Nanotechnology Links Directory