Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications


Nanotechnology Research Laboratories


(Links listed alphabetically)

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All

Showing results 751 - 775 of 2016

(Site in Dutch) A network to strengthen the economic acitivities of companies active in the areas of micro- an nanotechnologies.
The aim of the network MINAEAST-NET is to prepare the participation of organisations from associated candidate countries (ACCs) for projects in FP6 in the area of Micro and Nano Technologies (MNT). The main objective is networking on micro and nanotechnologies, according to priority thematic areas 2 (IST) and 3 (NMP) from FP 6.
A 'competitiveness cluster' that brings together major corporations, small and mid-sized businesses, government agencies, and organizations from the public and private sectors to develop a unique hybrid of micro- and nanotechnologies and embedded software.
A major French regional nanotech research center in Grenoble.
(Portugese language site) The nanotechnology information site of the Ministry of Science and Technology of Brazil.
MINOS-EURONET is devoted to stimulating, encouraging and facilitating the participation of New Member States (NMS) and the Associated Candidate Countries (ACC) in the activities of IST. The proposal has a pan-European focus on one strategic objective in IST, namely micro- and nanosystems.
In the process of being set up.
The Bawendi research group at MIT
The Belcher Group at MIT is using nature as a guide to develop novel electronic and magnetic materials and to pattern materials on the nanoscale.
ISN's charge is to pursue a long-range vision for how technology can make soldiers less vulnerable to enemy and environmental threats. The ultimate goal is to create a 21st century battlesuit that combines high-tech capabilities with light weight and comfort.
As a part of the condensed matter theory division at MIT, the Joannopoulos Research Group is actively researching a variety of complex systems from an ab initio standpoint. Most of the investigations fall into the broad categories of photonic crystals and optics or atomic systems and electronic structure.
The mission of the Varanasi Group is to bring about transformational efficiency enhancements in various industries including energy (power generation to oil and gas to renewables), water, agriculture, transportation and electronics cooling by fundamentally altering thermal-fluid-surface interactions across multiple length and time scales.
The research in the Laboratory for Multiscale Regenerative Technologies is focused on the applications of micro- and nanotechnology to tissue repair and regeneration. The long-term goals are to improve cellular therapies for liver disease, develop enabling tools to systematically study the fate of stem cells, and design multifunctional nanoparticles for cancer applications.
The Sengupta laboratory is focused on developing engineering solutions for complex disease. Our research lies at the interfaces of fundamental biology, medical applications and nano-scale engineering, where basic understanding of biology inspires the development of novel technology or medical applications.
The Mechatronics Research Laboratory (MRL) is devoted to the control, system dynamics and design challenges associated with the fields of nanotechnology, biotechnology and robotics. Current research includes control techniques of atomic force microscopes (AFM) to improve imaging, using the AFM to sequence DNA, filtering of nano-scale biomolecules in fluidic suspension, and design of energy-efficient robotics.
The Nanoscale Sensing group applies microfabrication technologies towards the development of novel methods for probing biological systems. Current projects focus on using electrical and mechanical detection schemes for analyzing biomolecules and single cells.
The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.
The NECST Consortiumís technology focus is to improve the performance of advanced aerospace materials/structures through strategic use of carbon nanotubes (CNTs) combined with traditional advanced composites to form hybrid architectures. Two primary 3D nano-engineered architectures are being explored and developed, both polymer-matrix based. The fabrication strategy involves novel synthesis of high-quality, long (several millimeters), aligned CNTs placed strategically in existing advanced composite systems. Early results have demonstrated that high-quality CNT/traditional hybrid composite laminates can be architected and fabricated at rates and scales that can be used in full-scale aerospace structures; this made the formation of the NECST industry Consortium imperative.
The Nanoengineering Group is part of the Mechanical Engineering Department at MIT. Their research is focused on nanoscale energy transport, conversion, and storage.
A state-of-the-art laboratory in the Department of Materials Science and Engineering at MIT for probing the properties and surfaces of engineering and biological materials at atomic and molecular length scales through mechanical contact.
The research group of Prof. Nicholas Fang is dedicated to multidisciplinary fields including nano-optics, photonic/acoustic metamaterials, as well as life sciences. They aim to study the fundamental physics of nano-optics and its application in super-resolution imaging, high-speed/low-cost optical modulation device, high sensitivity biology sensor, etc. High-throughput micro/nano-fabrication techniques are developed to manufactore novel 2D/3D structures. They are the pioneer of acoustic metamaterial study to demonstrate the negative index and super-resolution focusing in ultrasonic wave.
The Nanostructures Laboratory (NSL) at MIT develops techniques for fabricating surface structures with feature sizes in the range from nanometers to micrometers, and uses these structures in a variety of research projects. The NSL is closely coupled to the Space Nanotechnology Laboratory (SNL) with which it shares facilities and a variety of joint programs.
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale.† Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art.† They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Research in the Jarillo-Herrero group lies in the area of experimental condensed matter physics, in particular quantum electronic transport in novel low dimensional nanomaterials such as graphene and carbon nanotubes.
left arrowBack to Nanotechnology Links Directory