Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 776 - 800 of 1700

 
Maintains a nanoelectronics research lab.
The Research and Training Network NESPA will focus on the research topic of the development of high temperature superconductor (HTS) materials for power applications.
The Network for Computational Nanotechnology (7 universities) has a mission to connect theory, experiment, and computation in a way that makes a difference to the future of nanotechnology. While addressing challenges in nanotechnology NCN researchers produce new algorithms, approaches, and software tools with capabilities not yet available commercially.
The main objective of the project, which ran from 08/2004 until 07/2006, was to mobilize human and material resources in the field of nanostructured materials in New Member States of the EU, to consolidate, strengthen, and enhance the dispersed research/technological potential in this field of research, to promote and use the results of 5th FP and 6th FP, and to improve the knowledge based application oriented nanoscience and nanotechnology in Europe.
NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning.
The research in Prof. Dong Ko's group focuses on how we can utilize nanocrystals for direct conversion into electricity of two of the most important ubiquitous sources of free energy: sunlight and waste heat.
Nanoscience and materials at NYU includes fullerene derivatization studies, chiral sensors and triggered materials, peptide nanotechnology; peptide surface interactions, molecular imaging agents, and proteins containing unnatural amino acids.
The project focuses on the research and development of a new bioactive non-resorbable fibre-reinforced composite (FRC) material for load-bearing bone and joint implants in skeletal reconstruction of orthopaedic and trauma patients. A special emphasis will be placed on the development of bioactive and antibacterial surface treatments of the implants. Another objective is to produce novel composite-based bioactive resorbable fixation devices for ligament repairs of the knee and shoulder.
The ETM group focuses on unique strengths and capabilities to conduct world leading research, benefiting from synergies between: microelectronics; materials research and design to simulate nanostructures and technology processes and devices; fabrication in two in-house class 100-1000 clean rooms; characterisation of materials, devices and circuits; research on emerging electronic technologies
Research activities in the group encompass a wide range of themes at the cutting-edge of nanoscale science and nanotechnology - principal interests lie in the synthesis and characterisation of new nanomaterials, such as nanodiamonds, silicon nanocrystals, gold nitride (AuN) and photon reactions on ice.
The purpose of this FP7 supported project is the creation of a critical and commented database on the health, safety and environmental impact of nanoparticles.
Within the NILaustria project cluster the consortium will use Nanoimprint Lithography (NIL) to provide a versatile and cost efficient solution to achieve ultra high quality, large area nanostructures. The consortium brings together all Austrian research institutions using NIL and the two NIL-related companies in Austria, i.e. NIL equipment manufacturer EVG and IMS developing a novel method for NIL template fabrication.
The Nile University Center for Nanotechnology aims to improve Egyptian global competitiveness and stimulate targeted sectors of the economy by capacity building and development of intellectual property in important emerging technologies.
The Center's mission is to contribute to the development of human resources, knowledge, and technology essential for Egypt and the region, to secure a share in the fast-growing global electronics industry and economy.
This program focuses on the high impact emerging field of Nanoscience and Technology. You will attend lectures and labs on Nanomaterials processing, fabrication and characterization as well as modeling and simulation of such materials and systems.
The NIMIC consortium (Nano-IMaging under Industrial Conditions) is aimed at making a wide variety of physical, chemical and biological processes visible that take place on the scale of atoms and molecules. The powerful, new microscopes that NIMIC develops are being applied to catalysis, breast cancer research and nanotechnology.
Ningbo Institute of Materials Technology and Engineering (NIMTE) is being established by the Chinese Academy of Sciences (CAS). The polyner department houses a nanomaterial research unit.
This EU FP6 project aims at developing a nonviral vector for gene delivery, able of a) gene transfection in vivo and on a large amount of cells, b) local and non invasive therapy, c) frequent and easy medication. This nano-device will be based on a carbon nanotube.
The AML is designed to be the world's best measurement laboratory. NIST and its partners will be able to produce the measurements and standards needed to move key 21st-century technologies from the research horizon on to the factory floor.
This EU FP6 project focuses on an innovative bottom-up approach to fabrication and integration of nanoelectronic devices, based on self-assembling semiconductor nanowires. The primary target is to deliver replacement and add-on technologies to silicon CMOS, such as FET devices for logics and III-V bipolar transistors for RF applications.
The world's first government-sponsored organization dedicated to developing the biotechnology industry (including bionanotechnology). The center's mission is to provide long-term economic and societal benefits to North Carolina through support of biotechnology research, business and education statewide.
The NC Center of Innovation for Nanobiotechnology (COIN) is a non-profit organization with the goal of increasing commercialization of nanobiotechnologies in North Carolina. COIN's goal is to create synergy among existing statewide resources and bridge any gaps that are potential barriers to growth. This will bolster state-wide nanobiotech infrastructure and economic growth, delivering quality of life benefits to mankind.
The research activities in the center are directed towards understanding the fundamental science of nanoscale materials and utilizing their unique properties for commerical applications.
The degree program will hold classes on campus, but will also be the first master's degree program in nanoengineering that is offered via online distance education - making the program available to students who are already in the workforce. The program will also offer concentrations in biomedical science in nanoengineering, materials science in nanoengineering, and nanoelectronics and nanophotonics.
The Nanoscience Technology program is a collaborative effort between North Dakota State College of Science and Minnesota State Community and Technical College-Moorhead. Students may enroll and earn a degree through either college.