Nanowerk

Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1051 - 1075 of 1988

 
The research of the Mirkin Research Group at Northwestern focuses on developing methods for controlling the architecture of molecules and materials on the 1-100 nm length scale, and utilizing such structures in the development of analytical tools that can be used in the areas of chemical and biological sensing, lithography, catalysis, and optics.
The group's vision is to develop innovative technologies that harness biomolecular activity perfected by nature towards applications in cellular interrogation, bio-energetic/functional materials development, and next-generation medicine.
The Nanoscale Science and Engineering Center (NSEC) for Integrated Nanopatterning and Detection Technologies is driven by a vision to develop innovative biological and chemical detection systems capable of revolutionizing a variety of fields.
The Stupp laboratory at Northwestern University
The group harnesses molecular recognition and self-assembly processes in template-directed protocols for the synthesis of functionalized and mechanized molecules, prior to their being introduced into integrated nanosystems.
The Norwegian NanoMedicine Network is an initiative aiming to gather the main Norwegian players in research, industry and public administration within the nanomedicine field.
The 5-year programme is supported on a solid foundation of courses within physics, chemistry and mathematics. These are combined with courses in electronics and materials science that are oriented towards technology to give a good grounding for further studies in nanotechnology. The programme provides the theoretical basis and knowledge of experimental methods and technological applications of nanotechnology. The social implications of nanotechnology pertaining to ethical and environmental issues are also addressed. The first two years are common for all students in the programme. In the last three years, students choose their main profile from key areas relating to research, business and industry.
The aim of NTNU NanoLab is to establish a cross-disciplinary research environment for researchers within the fields of physics, chemistry, biology, electrical engineering, materials technology and medical research.
The convergence of multiple disciplines creates a synergy capable of overcoming persistent barriers and filling knowledge gaps to allow for transformational, revolutionary, and embryonic opportunities with many technological applications. The Institute's tools and research methodologies include in-depth analysis using convergence of multi/trans-disciplinary S&T fields, focused on nanotechnology, biotechnology, information technology, cognitive sciences, artificial intelligence, robotics, and genetics.
The Center's goal is to develop state of the art techniques for micro and nanoscale contaminant control, mitigation, removal and characterization in manufacturing and fabrication processes.
The mission of the Center, housed within the Rensselaer Nanotechnology Center (RNC), is to integrate research, education, and technology dissemination, and serve as a national resource for fundamental knowledge and applications, in directed assembly of nanostructures.
The center's mission is to create high throughput, reliable and versatile nanomanufacturing systems and associated processes through transformative research, education of leaders and global and industrial engagement that will revolutionize future generations of mobile computing and energy devices.
The Center for Nanophase Materials Sciences (CNMS) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.
OMNT's mission is to provide a continuous technical watch on key subjects in Micro and nanotechnologies.
The mission of this EU-funded project is to create a European Observatory on Nanotechnologies to present reliable, complete and responsible science-based and economic expert analysis, across technology sectors, establish dialogue with decision makers and others regarding the benefits and opportunities, balanced against barriers and risks, and allow them to take action to ensure that scientific and technological developments are realized as socio-economic benefits.
ONAP at the Oklahoma Center for the Advancement of Science and Technology is a pilot project designed to assist qualified Oklahoma companies with the process of applying nanotechnology through research, development, and manufacturing to improve current products or processes or create new, cutting-edge products or processes.
The Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) is a scientific research organization with activities concentrated in seven research fields: accidents, chemical substances and biological agents, musculoskeletal disorders, noise and vibration, protective equipment, occupational rehabilitation, safety of industrial tools, machines and processes. Plans for an integrated nanotechnology research program are underway.
In March 2007, the OECD's Committee on Scientific and Technological Policy (CSTP) established a Working Party on Nanotechnology. The objective of this Working Party is to promote international co-operation that facilitates research, development, and responsible commercialisation of nanotechnology in member countries and in non-member economies.
EMNLAB is a group within the physical electronics branch of Electrical Engineering at The Ohio State University. The group focuses on using a wide array of analysis, processing, and growth techniques to investigate the surface, interface, and ultrathin film properties of semiconductors.
A fundamental question to be addressed in the group's research is how we can learn from biological systems in nature, especially at the micro/nano-scale, in order to engineer biocompatible nanomaterials and further develop innovative robotic systems that are capable of interfacing with molecular and cellular systems for advanced therapeutics and tissue engineering applications, and for swimming efficiently in fluidic environment.
The goal of the center is to create devices that will make diagnosing, treating and managing diseases easier, less expensive and more effective.
The group's research is focused on the computational analysis of the flow, heat and mass transfer in micro and nano fluidic systerms. Current research projects include modeling of an implantable artifical kidney, DNA translocation in nanopores and fundamental issues associated with bio-sensing.
A major nanoprobe laboratory with a focus on bio/nanotechnology and biomimetics was organized in July 1991 with the initial financial support from the state of Ohio and The Ohio State University. More than 5700 square feet of laboratory space was made available for this purpose. The laboratory is populated with the modern scientific equipment needed to conduct state-of-the-art research.
ENCOMM NanoSystems Laboratory is operated by the OSU Center for Electronic and Magnetic Nanoscale Composite Multifunctional Materials. Its goal is to provide academic and industrial users with access to advanced material characterization and fabrication tools for research and development applications.
The center facility for nanotech research at Ohio State.
 
 
 
left arrowBack to Nanotechnology Links Directory