Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications


Nanotechnology Research Laboratories


(Links listed alphabetically)

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All

Showing results 101 - 125 of 2024

The vision of BIODOT is a hybrid bio-organic technology for transduction of dynamical phenomena of biosystems in-vitro. The device that will be developed is based on organic ultra thin film transistors integrated with microfluidics.
The Biologically Inspired Materials Institute (BIMat) was established by NASA under the University Research, Engineering and Technology Institute (URETI) program. The principal goal for BIMat researchers is to develop bio-nanotechnology materials and structures for aerospace vehicles.
This EU project seeks to provide Europe with a major time advantage over their main international competitors by developing a bionanotechnological device that can be used as a nanoactuator/biosensor, which also provides a novel interface between the Biological and Silicon Worlds.
BioNanoNet is a bionanotechnology network in Austria that carries out innovative interdisciplinary research in the field of drug development. Within this network new agents, action and application strategies are being developed by using techniques of nanotechnology. Research efforts are aimed at finding new agents and new treatment strategies for chronic degenerative and infectious diseases.
BioSciences Research Institute (BRI) has been setup as a premier Institute for Research & Development and Advanced Training in the field of BioSciences. Research includes nanotechnology.
BBSRC is the UK's leading funding agency for academic research and training in the non-clinical life sciences. It supports several Interdisciplinary Research Collaborations (IRC) in nanotechnology.
The BIOTEX project aims at developing dedicated biochemical-sensing techniques compatible with integration into textile. The consortium includes two research institutes in the field of micro and nanotechnology.
The mission of the group is to provide a rewarding and nourishing atmosphere of hands-on cutting edge research for students to develop and grow professionally and technically and use as an opportunity to springboard to a professional career that will benefit them and society.
The department has a strong record of research, with faculty involved in both experimental and theoretical areas. Some areas of current interest are: novel electronic materials; carbon nanotubes and nanotube arrays; theory of marginal Fermi liquids; optical and transport properties of low- dimensional condensed matter systems; novel superconductors.
The Center serves as a hub for nanoscience researchers from the Charles River and Medical Campuses and build activities that develop interdisciplinary research and training.
The central theme of the group's research is the exploration of quantum mechanical effects in engineered nanoscale structures and devices with a goal to study fundamental physical phenomena.
Research focuses on mechanical and electronic systems at the nanometer length scale. The group has state-of-the-art facilities where nanodevices can be fabricated and characterized.
Research in Optical Characterization and Nanophotonics (OCN) laboratory focuses on developing and applying advanced optical characterization techniques to the study of solid-state and biological phenomena at the nanoscale.
Shiladitya Sengupta's laboratory is focused on developing engineering solutions for complex disease. The team's research lies at the interfaces of fundamental biology, medical applications and nanoscale engineering, where basic understanding of biology inspires the development of novel technology or medical applications.
Highly interdisciplinary and translational, the group's research is focused on multifunctional, nanoparticle-based drug delivery systems. They seek to improve nanoparticle synthesis and formulation and its therapeutic efficacy. Additionally, they develop robust engineering processes to accelerate translation of nanoparticle-based drugs into the drug development pipeline. At the same time, they emphasize a fundamental understanding of the interface between nanomaterials and biological systems.
The group's focus is focus on nanoscale science, with an emphasis on carbon nanotubes and their respective uses.
With the global benefits of the new science of nanomedicine growing each year, the British Society for Nanomedicine has been created to allow open access for industry, academia, clinicians and the public to news and details of ongoing research throughout the UK.
The Brookhaven National Laboratory Center for Functional Nanomaterials will provide researchers with state-of-the-art capabilities to fabricate and study nanoscale materials.
The lab of Prof. Kenneth Breuer is active in research covering a wide variety of topics, including: Micron and nanometer scale fluid mechanics; Animal motion, in particular, bat flight and bacterial motility; Turbulent shear flows and shear flow control; Diagnostic methods for fluid mechanics.
The Institute for Molecular and Nanoscale Innovation (IMNI) was founded at Brown University in 2007 as an umbrella organization to support centers and collaborative research teams in targeted areas of the molecular and nanosciences. IMNI is a polydisciplinary venture with 55 faculty participants representing nine departments across campus. IMNI serves as a focal point for interaction with industry, government, and our affiliated hospitals.
Among other areas research into micro- and nanofabrication and nanoscience.
The R. Hurt laboratory at Brown focuses on the creation of 3D nanomaterial architectures and new nano-enabled technologies. They also study the potential adverse effects of emerging 2D nanomaterials on human health and the environment and work to identify safe design rules rooted in fundamental materials chemistry and physics that will enable their successful development and commercialization.
Research and education carried out in this laboratory are associated with the experimental, computational and conceptual study of nanomechnics and micromechanics of materials
The research group of Prof. Shouheng Sun is interested in nanoscale materials synthesis, self-assembly and applications in biomagnetics, catalysis, information storage and magnetic nanocomposites
Prof. Webster directs the Nanomedicine Laboratory which designs, synthesizes, and evaluates nanomaterials for various implant applications. Nanomaterials are central to the field of nanotechnology and are materials with one dimension less than 100 nm. Tissues investigated include bone, bladder, vascular, cartilage, dental, and the nervous system.
left arrowBack to Nanotechnology Links Directory