Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1326 - 1350 of 2037

 
The Quantum Information Science group at Stanford University, lead by Professor Yoshihisa Yamamoto, conducts the basic research on quantum optics, semiconductor mesoscopic physics, nuclear and electron spin resonance, with emphasis on quantum information system applications.
The major research interests of the group are the design, fabrication, characterization and applications of various active nanostructures such as nanofibers, nanotubes, nanojunctions and nanotrees. The active materials currently under exploration include piezoelectric, piezoresistive or conductive, thermal electric and photovoltaic materials. The targeted applications of the various nanostructures developed are acoustic sensors for structural health monitoring, medical devices for thrombus retrieving, nanoacoustic waves for circulating cancer cell screening, chemical sensors for various gases and explosives, biosensors for stroke diagnostics, and energy scavenging involving mechanical-electric, thermoelectric, optoelectric and chemical-electric energy conversions.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
The lab deals with Large-Area 3-D Nano-Patterning and Nanostructure Fabrication, Nanoscale Interfacial Phenomena, Multifunctional Superhydrophobic Surfaces, Microfluidic Self-Assembly of Nanomaterials, Nanofluidic Energy Harvesting, and Optofluidic Waveguides and Sensors.
The group is exploring nanoelectroics and nanomechatronics research areas based on low dimensional materials, including carbon nanotube, graphene and conjugated polymers.
The group is interested in studying the behavior of advanced material systems at the nanoscale. Particular material systems of interest include polymers and polymer nanocomposites, as well as thin film and piezoelectric materials of interest in MEMS applications.
The goal of the Nanotechnology Graduate Program is to create a vibrant interdisciplinary environment that provides stimulating and cross-fertilizing educational training in nanotechnology to contribute to the Institute's research excellence in related frontiers while preserving strong disciplinary fundamentals.
Part of the EU 'New Emerging Science and Technology' Programme, SIBMAR aims at high resolution structural information of individual biological molecules by employing coherent low energy electron waves.
The EU funded STREP project SUBTLE is associated with nanoelectronic devices in which quantum-confined electron channels are so closely spaced to each other that tailored feedback action exists. The approach of SUBTLE is based on the application of two effects in miniaturized electronics, which one usually tries to avoid in device design: back-action of the channel on the gate and noise induced switching.
A new institute supported by Samsung Advanced Institute of Technology
The primary goal of HINT is the development of core technologies on nanomaterials, processes and devices for human interface systems.
The goals of CINAP are to perform outstanding research in the fields of fundamental and applied physics of low-dimensional structures and to produce young scientists committed to nanophysics and nanoscience.
The group works on the synthesis of nanostructures, nano generators, sensors, LEDs, and hybrid solar cells.
SSW is a consulting and research laboratory at The University of Western Ontario, handling all aspects of material surface properties.
The Sustainable Nanotechnology Organization (SNO) is a non-profit, worldwide professional society comprised of individuals and institutions that are engaged in: Research and development of sustainable nanotechnology; Implications of nanotechnology for Environment, Health, and Safety; Advances in nanoscience, methods, protocols and metrology; Education and understanding of sustainable nanotechnology; Applications of nanotechnology for sustainability. SNO's purpose is to provide a professional society forum to advance knowledge in all aspects of sustainable nanotechnology, including both applications and implications.
SustainComp is a large scale collaborative project financed by the European Commission. The project aims at developing new types of sustainable composite materials for a wide range of applications and has the ambition to integrate today's large enterprises on the raw material and end-use sides. (e.g. pulp mills and packaging manufacturers) and small and medium sized enterprises on the composite processing side (e.g. compounders and composite manufacturers).
SustainPack is the biggest and most important packaging research project ever undertaken. The purpose of SustainPack is to establish fibre-based packaging as the dominant player in the packaging area within a decade. It will achieve this by applying nanotechnology solutions to deliver lean and added value fibre-based packaging options for users and consumers.
A joint research institute by the Chinese Academy of Science (CAS), the government of Jiangsu Province and the government of Suzhou city with a focus on nano-devices and related materials, nanobiotech and nanomedicine, nanobionics and safety of nanomaterials.
B.Sc. Physics with Nanotechnology Degree Scheme.
The Centre for NanoHealth (CNH) will be located within a Clinical and Biomedical research environment on Swansea?s Singleton hospital site, giving access to patients and creating a pioneering, integrated facility in which novel devices and sensors can be designed, manufactured, functionalised, tested and evaluated.
This is a one-year course, normally a first- or second-class honours degree, dependent on the area of research, offered at the univrsity's The Multidisciplinary Nanotechnology Centre.
The MRes course consists of a 4-month period of intensively taught modules from October to the end of January, followed by an 8-month period of individual research. There are two streams to the MRes course and students may choose to specialise in either structures or fluids. The MSc course consists of an initial 6- month period of taught modules. This provides a good grounding in computer modelling and in the finite element method, in particular. Following the taught component, students undertake a 6-month period of project work.
This course provides students with the knowledge, motivation, and self-learning skills required for continuous professional development during their future careers and provides valuable experience of working on complex projects both as individuals and as team members. The full-time scheme lasts for 12 months and consists of two taught semesters (Part I), followed by a three-month period of individual research (Part II) during the summer.
 
 
 
left arrowBack to Nanotechnology Links Directory