Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories


Showing results 16 - 29 of 29 for research and community organizations in Netherlands:

The NIMIC consortium (Nano-IMaging under Industrial Conditions) is aimed at making a wide variety of physical, chemical and biological processes visible that take place on the scale of atoms and molecules. The powerful, new microscopes that NIMIC develops are being applied to catalysis, breast cancer research and nanotechnology.
A world-class interdisciplinary place for applied research aiming at business creation in the field of microsystems and nanotechnologies, enabled by innovations in materials and processing methods, state-of-the-art cleanroom infrastructure and a full spectrum of characterization facilities.
The aim of IMM is to conduct research in the field of functional molecular structures and materials. There is an emphasis on understanding and controlling complexity in order to be able to design new functionality in these systems. This research area can roughly be divided into two main themes: bio-inspired systems and nano/mesoscopic structures.
The research program of the Feringa group at the University of Groningen in the Netherlands is focussed on synthetic organic chemistry with a major part of the research is directed towards nanotechnology and novel functional materials, like molecular switches and motors.
The Top Master programme in Nanoscience aims to train the cutting-edge scientists of the future. This is achieved by offering a challenging interdisciplinary programme and by admitting only very talented and motivated students. The courses are taught by top international scientists, and a large part of the programme consists of actually conducting scientific research, alongside world-class scientists, using the state-of-the-art facilities of the Zernike Institute.
Within the NanoLab NL program, the infrastructure in Groningen is designed to function as the Dutch center for bottom-up (bio)molecular electronics and functional (bio)molecular nanostructures, and for the development of nanostructures based on supramolecular interactions and molecular lithography.
The classic materials triangle concerns an integrative approach in the three aspects of structure, property and chemical composition. The Zernike Institute for Advanced Materials adds an extra dimension to this traditional view by an unconventional linkage to the field of biomolecular sciences, which includes the design aspects as well.
For many years, the group's research theme has been the resonant interaction of electromagnetic waves, or photons, with condensed matter, consisting in most cases of organic molecules. Photons can be simply absorbed by matter, they can flip spins in a magnetic field in Electron Paramagnetic Resonance (EPR), or excite the electron cloud in optical absorption experiments. However, many of the effects they look at are more complex, nonlinear. They study, for example, the effect of two frequencies on spin echoes in EPR, the emission of light at wavelengths different from that of the excitation laser (fluorescence), and the effect of spin resonance on this emission (optically detected magnetic resonance, ODMR), or phenomena involving two or more photons, such as spectral hole-burning.
The group investigates photonic band gap crystals, Anderson localization and diffusion of light, random lasers and related phenomena.
MESA+ institute for nanotechnology, trains graduate students and PhD-students and conducts research in the fields of nanotechnology, microsystems, materials science and microelectronics. Unique of MESA+ is its multidisciplinary composition. Many research groups of the faculties Electrical Engineering, Mathematics, Computer Science (EEMCS) and Science and Technology (S&T) participate in the MESA+ institute.
The MSc Nanotechnology is a 2 year programme for anybody having a BSc degree in any applied science. The educational programme is offering you a multidisciplinary approach to this new emerging field, forming an excellent preparation for a scientific career both at the university or in industry.
The graduate research programmes of the Twente Graduate School are set up as a coherent and integrated master and doctorate course that runs over a period of five to at most six years leading to a PhD degree.
In order to obtain a deeper insight into the behavior of nanoscale devices the group of Prof. Zandvliet studies their physical, chemical and especially electronic properties with high spatial resolution techniques. For that purpose they mainly apply Scanning Probe Microscopy (SPM) and Spectroscopy (SPS). Further development of SPM-based probes for electrical characterisation of nanostructures is a key part of their described research area.
Wageningen BioNT at the University of Wageningen is active in the fundamental science and technology of micro- and nanosystems and their applications in food and health. The centre helps companies to utilize the opportunities of micro- and nanotechnology to improve our food and prevent health problems.
left arrowBack to Nanotechnology Links Directory