Nanotechnology Research in

 

Showing results of 49 for research and community organizations in Texas:

 
The Alliance for NanoHealth (ANH) was the first multi-disciplinary, multi-institutional collaborative research endeavor aimed solely at using nanotechnology to bridge the gaps between medicine, biology, materials science, computer technology and public policy. The ANH comprises seven world-class research institutions, scientists and clinicians located within the world's largest collection of healthcare facilities.
In past decades, nanostructured materials have shown promise of revolutionizing a number of areas, including theranostic, electronic, and photonic materials. Applications of these fields include yet a wider range of specialities, which can be incorporated into sensor material design. This shall be the focus of the MEAN Lab; fundamental material properties and applications of nanomaterials to sensor design. The MEAN Lab shall span a spectrum of expertise (e.g. - nanomaterials, bionanotechnology, interfacial science, electrochemistry), all of which fall under the umbrella of sensor design.
A nonprofit scientific research and education foundation chartered to conceive, establish, and conduct cutting-edge technology, research, and development in the areas of aerospace, education, energy, life sciences, shipping and transportation.
NEWT, an interdisciplinary, multi-institution nanosystems-engineering research center (headquartered at Rice University), is applying nanotechnology to develop transformative and off-grid water treatment systems that both protect human lives and support sustainable economic development.
The NSF Nanosystems Engineering Research Center (NERC) for Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) will develop high throughput, high yield and versatile nanomanufacturing systems to take nano-science discoveries from the lab to the marketplace. The Center is led by The University of Texas at Austin and includes two partner institutions - University of California at Berkeley and University of New Mexico. Also included are Seoul National University in South Korea and Indian Institute of Science.
The Level One Certificate in Nanobiotechnology will prepare students to work on the interface between nanotechnology and biotechnology that involves synthesis and fabrication of materials and devices, surface and molecular engineering. The students will complete16 credits in materials and nanotechnology courses and will complete 7 credits specializing in Biotechnology as it applies to nanotechnology.
The Advanced Technical Certificate is designed for the student who wishes to transition into the Nanotechnology field from a traditional science education background. To be admitted to the Advanced Technical Certificate, the student must hold an Associate or Baccalaureate degree with a concentration in a Physical or Natural Science discipline of either Physics, Chemistry, Biology or Engineering. A minimum of 8 credits in Physics coursework including laboratory training is required. The Certificate will prepare students to transition into careers in emerging nanotechnology industries as nanotechnicians in research and development corporations, fabrication, biology/agriculture, medicine, electronics, and material science.
The center's mission is to create high throughput, reliable and versatile nanomanufacturing systems and associated processes through transformative research, education of leaders and global and industrial engagement that will revolutionize future generations of mobile computing and energy devices.
Research in RQI encompasses advanced materials, quantum magnetism, plasmonics and photonics, biophysics, ultracold atom physics, condensed matter and chemical physics, and all aspects of nanoscience and nanotechnology.
Upon completing the BA degree with a major in Materials Science and Nanoengineering, students will demonstrate an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
The Center for Biological and Environmental Nanotechnology (CBEN) is a National Science Foundation (NSF) funded Nanoscale Science and Engineering Center (NSEC) at Rice University. Aiming to transform nanoscience into a field with the impact of a modern-day polymer science, CBEN focuses on research at the interface between "dry" nanomaterials and aqueous media such as biology and the environment, developing the nanoscience workforce of the future, and transferring discoveries to industry
Faculty in the Department of Materials Science and NanoEngineering hold joint appointments in several other departments: mechanical engineering, bioengineering, chemistry, chemical and biomolecular engineering, electrical and computer engineering, civil and environmental engineering and physics and astronomy.
The Halas Nanophotonics Group at Rice University
Dedicated to the development of optics at the nanoscale
Upon completing the MMSNE degree, students will be able to acquire broad, advanced knowledge within either Materials Science or NanoEngineering, which is also in-depth in one major sub-discipline of the field; and conduct research at an advanced level in at least one area of Materials Science and Nanoengineering.