Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 451 - 475 of 546 for university labs starting with U:

 
Nano-Bio-Physics is a new and interdisciplinary program being developed at UTA Physics department. The goal is to develop a strong research and education program among nanotechnology, biotechnology and Physics.
The Nanotechnology Research & Teaching Facility is an interdisciplinary resource open to scientists within and outside of the University. Research activities are conducted through mutually-beneficial associations of chemistry, electrical engineering, mechanical and aerospace engineering, materials science and physics faculty, graduate students and research assistants at UTA, as well as collaborative efforts with investigators at other universities and in the private sector.
The University of Texas at Arlington is home to the preeminent university-based nanotechnology research, development and teaching facility in North Texas.
Research activities in the lab are concerned with basic and applied processing-structure-property relationship with emphasis on nanotechnology and small-scale materials (nano materials, surface treatments and layers, thin films, coatings, materials for MEMS and NEMS and nano devices).
Research activities at the lab are concerned with basic and applied processing-structure-property relationship with emphasis on nanotechnology and small-scale materials (nano materials, surface treatments and layers, thin films, coatings, materials for MEMS and NEMS and nano devices).
The Center for Nano- and Molecular Science and Technology (CNM), founded in October 2000, is a multidisciplinary research center within the Texas Materials Institute (TMI). The Center's mission is to foster research, education, and outreach in nanotechnology at the University of Texas at Austin (UT Austin).
A member of the National Nanotechnology Infrastructure Network (NNIN).
Students who have a strong background in any of the physical sciences or engineering disciplines are encouraged to apply to the Graduate Program in Materials Science and Engineering. MS&E students that select the Nanomaterials Thrust will take a sequence of courses from basic to advanced designed to train them in the fundamentals of materials science as well as critical skills in processing, characterization and applications of nanomaterials.
The group is exploring the growth and electronic properties of quantum confined systems, such as semiconductor nanowires and graphene, for novel high speed, low power electronic devices. They are interested in band engineered Ge-SiGe core-shell nanowires and field-effect transistors, spin transport in germanium nanowires, and the electronic properties of graphene bilayers.
Development of the Nanoscale Properties and Materials web site was initiated by Dr. Miguel Jose Yacaman of the Chemical Engineering Department at The University of Texas at Austin. The site is intended to be used primarily by undergraduate and graduate students in Chemical Engineering, Biomedical Engineering, Physics, Chemistry, and related fields that deal with nanotechnology.
The Ruoff group is located in the department of Mechanical Engineering at the University of Texas. Major interests are: Synthesis and properties of nanostructures including CNTs and graphene; Energy and the Environment; Preparation and properties of composites; Nanomanipulation and nanorobotics; Instrument development and technology transition; New tools and methods for the biomedical sciences.
Students who have a strong background in any of the physical sciences or engineering disciplines are encouraged to apply to the Graduate Program in Materials Science and Engineering. MS&E students that select the Nanomaterials Thrust will take a sequence of courses from basic to advanced designed to train them in the fundamentals of materials science as well as critical skills in processing, characterization and applications of nanomaterials.
SWAN is one of the three centers created in 2006 by the Semiconductor Research Corporation Nanoelectronics Research Initiative ( SRC-NRI) to find a replacement to conventional metal oxide semiconductor field effect transistors. SRC-NRI is a consortium of TI, Freescale, AMD, MICRON, Intel and IBM.
Director of the NanoTech Institute of the University of Texas at Dallas.
The Micro/Nano Devices and Systems Lab focuses on developing tools and devices which operate on a very small scale.
The research group of Walter Hu focuses on integrating nanoscale elements of electronics, chemistry, and biology. Such nano-bio-engineering fusion may provide rare opportunities to explore new science and applications.
Guided by theory and enabled by synthesis, the NanoTech Institute develops new science and technology exploiting the nanoscale.
The Department of NanoMedicine and Biomedical Engineering is focused on inter-disciplinary research combining NanoMedicine, Biomedical Engineering and computational sciences to develop novel therapeutic and diagnostic platforms for combating diseases including cancer, cardiovascular diseases and infectious diseases.
The group aims to develop methods of quality assurance for objects in the field of nanotechnology.
Established by a research development grant from SHEFC, the Thin Film Centre aims to act as a centre of excellence in Scotland for the development of deposition processes for thin films, the design and fabrication of thin film products, the characterisation of thin films and the dissemination of information about the applications of thin films.
The laboratory for supramolecular and macromolecular chemistries and materials sciences.
Among other areas, research in the Nakamura lab deals with the nanoscience of tailor-made cluster molecules in biology.
NCRC was established at University of Tokyo for the purpose of realizing core technologies for the development of the ubiquitous information devices based on nanotechnologies, and is aiming at becoming one of the Center of Excellence (COE) in the world of advanced nano-photonics and electronics.
Masami Hagiya's project group dealing with molecular computing.
Biomedical nanoelectronics and biocomputer chips.
 
 
left arrowBack to Nanotechnology Links Directory