Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: February 22, 2010

Die 'Tinte' mit den zwei Gesichtern

(Nanowerk News) In der Natur wird sie seit Milliarden von Jahren genutzt: die sogenannte Selbstorganisation. Einzelne zufällig angeordnete Moleküle organisieren sich wie von selbst zu einer geordneten Struktur. Die Ordnung in natürlichen Eiweißen, Zellmembranstrukturen oder, wie einige Forscher meinen, der Ursprung des Lebens selbst, basieren auf dieser Selbstorganisation von Molekülen. Die treibende Kraft für diese Selbstorganisation ist physikalischer Natur: die sogenannten Van-der-Waals-Kräfte zwingen die Moleküle, sich zu ordnen.
Materialwissenschaftler nutzen solche "Selbstassemblierungs-Effekte" seit Jahren, z. B. um die Eigenschaften von Materialoberflächen gezielt einzustellen. So entstehen mittels selbstorganisierender Monoschichten (SAM), die nur eine Molekülschicht dick sind, wasser- oder schmutzabweisende Materialien - je nachdem, wie die Schwanzgruppe der SAM-Moleküle aufgebaut ist. Letzteres wird als Funktionalität des SAMs bezeichnet. Mit ihrem anderen Ende - der Kopfgruppe - haften SAM-Moleküle fest an der Materialoberfläche. Mittels spezieller Drucktechniken, wie der Mirkostempeltechnik, lassen sich mit den SAMs auch komplex strukturierte Materialoberflächen herstellen. Die SAM-Moleküle dienen dann als eine Art "Tinte", mit der auf die Materialoberfläche Mikro-Muster gedruckt werden, um bestimmte Materialeigenschaften zu erreichen.
Der Nachteil von SAM-Molekülen ist, dass sie mit ihrer Kopfgruppe meist nur an einem Material, z. B. Gold, haften können und die Schwanzgruppen nur eine bestimmte Funktionalität erlauben. Wenn man eine SAM-Schicht auf einem anderen Material erzeugen möchte oder andere Funktionalität braucht, müssen neue SAM-Moleküle hergestellt werden. Da das aufwendig und teuer ist, träumen Materialwissenschaftler seit langem von einem universellen SAM-Molekül, das auf allen Materialoberflächen haftet und dessen Funktionalität sich beliebig einstellen lässt.
Materialwissenschaftlern von der Universität Jena ist es in Zusammenarbeit mit Forschern vom Max-Planck-Institut für Chemische Ökologie in Jena nun gelungen, diesem Ziel einen großen Schritt näher zu kommen. Diese Entdeckung ist heute (22.02.) in der internationalen Fachzeitschrift Small veröffentlicht worden ("The Janus-SAM Approach for the Flexible Functionalization of Gold and Titanium Oxide Surfaces").
Dr. Rahila Bhat, Prof. Dr. Klaus Jandt und Mitarbeiter des Instituts für Materialwissenschaft und Werkstofftechnologie (IMT) der Friedrich-Schiller-Universität Jena verwendeten dazu das Molekül N-(3-diethylphosphatoxy) propyl-11-mercaptoundecanamide (PPMA) zum ersten Mal als "Tinte" in mikrogestempelten SAMs. Die zwei verschiedenen Enden des PPMA-Moleküls wurden geschickt als zwei verschiedene Kopfgruppen verwandt, um auf einem Metall (Gold) oder einer Keramik (Titandioxid) SAMs zu bilden. Werden diese SAMs dann mit Enzymen behandelt, lassen sich unkompliziert verschiedene Funktionalitäten der SAMs erzeugen, wie Bhat und Jandt zeigen konnten.
Nach dem römischen Gott mit den zwei Gesichtern Janus nennen die Jenaer Materialforscher ihre innovative Materialtechnologie den Janus-SAM (JSAM). "Wegen der Vielseitigkeit der Janus-SAMs wird dieser innovative Ansatz voraussichtlich erhebliche Auswirkungen darauf haben, wie SAMs in Zukunft für Forschung und Anwendung hergestellt werden", sagt Prof. Jandt, der Direktor des IMT. Kein Wunder also, dass die Jenaer Materialforscher ein Patent für diese neue Technologie beantragt haben und auf großes Interesse von Forschungseinrichtungen und Industrie hoffen.
Source: Friedrich-Schiller-Universität Jena
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.