Posted: March 28, 2007

Nanotechnology a cornerstone of the plastic electronics revolution

(Nanowerk News) An engineer from The University of Manchester who is pushing boundaries in the field of nanotechnology has been recognised with a prestigious award.
Professor Aimin Song from the School of Electronic and Electrical Engineering (EEE) is one of only eight people to receive a 2007 Brian Mercer Feasibility Award from the Royal Society.
The £30,000 award will assist Professor Song in his efforts to push the processing speed of plastic components way beyond what has previously been achieved.
Plastic electronics arguably came to real prominence after three scientists won the 2000 Nobel Prize for their contribution to the discovery and development of conductive polymer plastics.
The technology opens up the possibility for very flexible, high-tech devices – such as information screens that you can roll up and put in your pocket – being developed.
But while the rise of plastic electronics has brought potential, it has also brought some problems; conventional multi-layered transistors made from polymer plastics offer relatively slow conductivity speeds and involve a complex and costly manufacturing process.
With support and funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Song has pioneered a way to make single-layered planar plastic transistors and diodes using a fast and simple printing technique.
Professor Song is confident he can push the speed of his organic plastic semiconductors to around 100Mhz – way beyond the 20 Megahertz (Mhz) he has so far achieved.
In the past, multi-layered transistors made from plastic have generally worked at Kilohertz (KHz) speeds or below.
Plastic components such as semiconductors and diodes could be used to create drivers for flexible displays, Radio Frequency Identification Tags (RFIDs) and intelligent disposable sensors.
Professor Song believes this could ultimately lead to the production of information displays that can be rolled up and put into your pocket, and also changeable electronic wallpaper.
Other potential applications include intelligent tickets for public transport systems or road charging schemes and electronic stamps for letters and packages.
Due to the high level of commercial interest in Professor Song’s breakthrough technology, he has formed a company called Plastic ePrint Ltd with support form The University of Manchester Intellectual Property Ltd (UMIP).
The firm is now seeking venture capital funding and is also working on creating demonstration versions of plastic radio frequency (RF) smart cards and developing plastic components for use in flexible displays.
Professor Song, who works in the Microelectronics and Nanostructures group at The University, said: "In the film The Graduate, the character played by Dustin Hoffman is famously advised that the future is plastics. From many points of view, this prediction is quite true and I think that plastics will bring a revolution for the second time in history.
"The components we have developed are simpler and potentially much cheaper to produce and much faster than previous organic electronic devices.
"These advantages come from the simplicity of the single layer, planar structures, rather than the multi-layer vertical structures of conventional semiconductor devices.
"There is still much work to be done, and this prestigious award will help us continue to drive our work forward. However, I am confident the development of plastic electronics will lead to a new-generation of exciting products coming into our everyday lives."
Dr Richard Price from UMIP said: "Professor Song’s technology has the potential to be at the cornerstone of the plastic electronics revolution – the nanodevices are so simple, yet extremely elegant.
"Initial applications will have relatively modest functionality in comparison to today’s silicon technology, but as materials and processes continue to develop there should be no reason why high-performance products cannot be realised in the future."
Professor Song is one of two academics from The University of Manchester to receive a Brian Mercer Feasibility Award this year.
Professor Andre Geim from The School of Physics and Astronomy also received the honour for his discovery and development of two-dimensional materials – including graphene – that are only one atom thick.
Source: University of Manchester