Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: August 16, 2010

Oak Ridge National Laboratory and Asylum Research Receive Microscopy Today Innovation Award for New Band Excitation SPM Technology

(Nanowerk News) Asylum Research, the technology leader in scanning probe and atomic force microscopy, and Oak Ridge National Laboratory (ORNL) have just received the prestigious Microscopy Today Innovation Award for the development of Band Excitation (BE), a new breakthrough scanning probe microscopy (SPM) technology. Band excitation allows more rapid probing of energy dissipation at the nanoscale than previously possible, enabling scientists to characterize a sample's electrical, magnetic, and mechanical energy conversion and dissipation properties at standard imaging rates. creation of advanced radial patterns of organized, aligned nanofibers.
Band Excitation captures the full tip dynamics during a scan, and therefore let's you see the transfer function or cantilever tune everywhere
Band Excitation captures the full tip dynamics during a scan, and therefore let's you see the transfer function or 'cantilever tune' everywhere. From this information one can see maps of dissipation and non-linearities directly. Shown is a 15X15 micron BE acoustic force microscopy scan of a polymer blend from which the Q-factor has been extracted. A clear contrast can be seen between the different constituent materials. Also shown are the average transfer functions over the regions indicated by blue and red dots on the map. The ability to capture tip motion in greater detail makes nanoscale measurements of material properties possible.
The applicability of SPM for mapping energy transformations and dissipation has previously been limited by the fundamental operation mechanism employed in nearly all conventional SPMs – that is, they operate at only one frequency at a time. However, in order to fully capture the dynamic interactions of the SPM tip and the surface – of which dissipation is a critical component – one must know how this interaction varies at many frequencies. BE achieves this breakthrough in information gathering by exciting and detecting the tip dynamics at many frequencies simultaneously – like seeing in color as opposed to black and white, or listening to a chorus of singers instead of a single note. In BE, the conventional sine wave is substituted by a synthesized digital signal that spans a continuous band of frequencies and monitors the response within the same frequency band. This allows ~100x improvement in data acquisition speed compared to currently available commercial technologies without decreasing the signal to noise ratio. A full response spectrum can then be collected in the amount of time required for obtaining a single pixel in standard SPM. BE will be an important technology in understanding energy dissipation in a diverse range of technologies, including electronics, information technology, energy storage and transport, and more.
"We're extremely excited to have won this prestigious award," said Roger Proksch, President of Asylum Research. "Our collaboration with the Oak Ridge National Laboratory has put forth many new cutting-edge developments in the field of SPM, including the Piezo Force Module and Switching Spectroscopy PFM. The Band Excitation method presents a fundamentally new method for data acquisition and processing in SPM. Asylum Research and our collaborators continue to lead the industry with technical innovation as confirmed by this award."
"We believe Band Excitation will be the harbinger of a new family of SPMs," said Dr. Sergei Kalinin, co-inventor and researcher at the Center for Nanophase Materials Sciences (CNMS) at ORNL. "This method provides an alternative to well-known lock-in-based detection methods, and can revolutionize this field by providing the potential for quantitative and artifact-free dissipation imaging. We are looking forward to developing new applications for BE through our partnership with Asylum Research."
"This award acknowledges the important step forward that this technique represents and signals where the field of microscopy can and will go in the future," noted Dr. Stephen Jesse, another co-inventor from the CNMS. "The speed and flexibility of the latest generation of Asylum SPM controllers permit the fine tuning and fast acquisition of data streams needed to take us from mere imaging to an arena of information-rich insight into cantilever-surface interactions and material functionality."
About Oak Ridge National Laboratory
Oak Ridge National Laboratory is a multi-program science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC, and is located in Oak Ridge, Tenn. The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theory/ modeling/ simulation, and design of nanoscale materials. Access to the user program is described at www.cnms.ornl.gov.
About Asylum Research
Asylum Research is the technology leader in atomic force and scanning probe microscopy (AFM/SPM) for both materials and bioscience applications. Founded in 1999, we are an employee owned company dedicated to innovative instrumentation for nanoscience and nanotechnology, with over 250 years combined AFM/SPM experience among our staff. Our instruments are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more. Asylum's product line offers imaging and measurement capabilities for a wide range of samples, including advanced techniques such as electrical characterization (CAFM, KFM, EFM), high voltage piezoresponse force microscopy (PFM), thermal analysis, quantitative nanoindenting, and a wide range of environmental accessories and application-ready modules.
Asylum's MFP-3D™ set the standard for AFM technology, with unprecedented precision and flexibility. The MFP-3D is the first AFM with true independent piezo positioning in all three axes, combined with low noise closed-loop feedback sensor technology. The MFP-3D offers both top and bottom sample viewing and easy integration with most commercially-available inverted optical microscopes.
Asylum's new Cypher™ AFM is the world's first new small sample AFM/SPM in over a decade, and sets the new standard as the world's highest resolution AFM. Cypher provides low-drift closed loop atomic resolution for the most accurate images and measurements possible today, rapid AC imaging with small cantilevers, Spot-On™ automated laser alignment for easy setup, integrated thermal, acoustic and vibration control, and broad support for all major AFM/SPM scanning modes and capabilities.
Asylum Research offers the lowest cost of ownership of any AFM company. Ask us about our industry-best 2-year warranty, our legendary product and applications support, and our exclusive 6-month money-back satisfaction guarantee. We are dedicated to providing the most technically advanced AFMs for researchers who want to take their experiments to the next level. Asylum Research also distributes third party cantilevers from Olympus, Nanoworld/Nanosensors, and our own MFM and iDrive™ tips.
For additional information, contact Terry Mehr, Director of Marketing Communications, or Monteith Heaton, EVP, Marketing/Business Development, Asylum Research, 6310 Hollister Avenue, Santa Barbara, CA 93117, 805-696-6466x224/227, Terry@AsylumResearch.com, Monte@AsylumResearch.com.
Source: Asylum Research (press release)
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: