Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Feb 13, 2012

Durchbruch in Solarzellenentwicklung - Strom aus ultraleichtem Nanodraht

(Nanowerk News) Ein Wissenschaftlerteam vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) hat eine ausgeklügelte Methode entwickelt, Nanodrähte für ultraleichte Solarzellen nutzbar zu machen. Das Ergebnis wurde in Advanced Functional Materials veröffentlicht ("n-GaAs/InGaP/p-GaAs Core-Multishell Nanowire Diodes for Efficient Light-to-Current Conversion").
Herkömmliche Solarzellen, wie man sie von vielen Dächern kennt, bestehen aus zwei Schichten, von denen eine – vereinfacht ausgedrückt – negativ geladen ist, die andere positiv. An der Grenzfläche zwischen diesen Schichten wird die Energie der Sonnenstrahlen absorbiert und in Strom umgewandelt. Die Wandlung von Sonnenlicht in Strom geschieht dabei auf einer Strecke von etwa einem Hundertstel Millimeter, in der Nanotechnologie ein halber Marathon. Das bedeutet immensen Materialverbrauch, hohes Gewicht und schliesslich hohe Kosten. Tauscht man das klassische Solarzellenmaterial Silizium gegen Galliumarsenid aus, wird die Strecke um den Faktor 100 reduziert.
In der Arbeitsgruppe von CENIDE-Professor Franz-Josef Tegude beschäftigt sich Christoph Gutsche während seiner Promotion mit neuartigen Solarzellen im winzigsten Massstab: Es geht um Nanodrähte aus Galliumarsenid, die an ein menschliches Haar erinnern, aber einen tausendfach kleineren Durchmesser aufweisen. Im Gegensatz zu den klassischen Schichtsystemen, die nur rund 60 Prozent des Sonnenlichts einfangen können, absorbieren dicht an dicht stehende Nanodrähte mehr als 90 Prozent der einfallenden Strahlung. Zudem bestehen Gutsches Drähte aus einem negativ geladenen Kern und einer positiv geladenen Hülle, so dass das Verhältnis zwischen Platzbedarf und der zur Stromerzeugung benötigten Grenzfläche deutlich grösser ist als bei den Schichtsystemen. Dies macht die Nanodrähte zu potenziellen Kandidaten für wirtschaftlich wettbewerbsfähige Anwendungen, bei denen ein geringes Gewicht erwünscht ist, beispielsweise in der Raumfahrt.
Um den erzeugten Strom an den Drähten abführen zu können, muss je ein elektrischer Kontakt am Kern und an der Hülle anliegen. Und genau hier lag bisher das Problem derartiger Kern-Hülle-Nanodrähte: Innen wie aussen bestehen sie aus Galliumarsenid, der Kern hat einen Durchmesser von 100 Nanometern (nm), mit Hülle messen sie 270 nm im Querschnitt. Den Wachstumsprozess kann man zwar in gewissen Grenzen beeinflussen, nicht aber so, dass z.B. ein Stück Kern aus der Hülle herausragen würde.
Wie kontaktiert man also exakt Kern- und Hüllenoberfläche? Gutsches Idee dazu ist so einfach wie genial. Zwischen Kern und Hülle hat er eine Zwischenschicht eingebaut: Mit Phosphorsäure löst er die äussere Hülle ab, mit Salzsäure die Zwischenhülle. Beide Säuren ätzen selektiv, sodass der Ablösungsprozess jeweils automatisch am Beginn der neuen Schicht stoppt. "Mit dieser Methode können wir auch Schwankungen bei der Herstellung ausgleichen", erklärt Gutsche. "Wir können tausende Drähte gleichzeitig und vorsichtshalber etwas länger ätzen. An der Schichtgrenze stoppt der Prozess ohnehin."
Mithilfe dieser Methode haben es die CENIDE-Wissenschaftler als Erste geschafft, einen radialen (von Kern zu Hülle) Nanodraht gezielt und im grossen Massstab reproduzierbar zu kontaktieren und für die Stromerzeugung aus Sonnenlicht zu nutzen.
Source: Universität Duisburg-Essen
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: