Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Apr 05, 2012

Crushing pressure, swelling pores

(Nanowerk News) By squeezing a porous solid, scientists surprisingly made its cavities open wider, letting in – and trapping – europium ions. Given the similarities between europium and uranium ions, the team, based at the University of South Carolina, Yonsei University (Korea), and Stanford University, thinks the innovation could represent a promising new avenue for nuclear waste processing.
The focus of their work is natrolite, one of the many examples of aluminosilicate minerals called zeolites, which contain tiny, regularly spaced pores. Zeolites come in more than a hundred different forms, and the composition of each variant determines the size of the cavity and thus the kinds of molecules and ions that can be retained, or excluded, within.
As a result, zeolites can separate and sort chemical species: Added to a solution containing a mixture of ions, they can selectively retain only those ions that can fit within the pores.
Lund
High-pressure ion exchange of small-pore zeolite K-natrolite allows immobilization of nominally non-exchangeable aliovalent cations such as trivalent europium. A sample exchanged at 3.0(1) GPa and 250°C contains about 4.7 Eu3+ ions per unit cell, which is equivalent to over 90 % of the K+ cations being exchanged
The authors are building on a series of studies that demonstrate how to assert control over the kinds of guests that zeolites will hold within their cavities. The team uses a stimulus that is seldom used to control cavity size: pressure.
Working with natrolite, a natural zeolite with a 2:3:10 ratio of Al:Si:O in the framework, the team reported in Angewandte Chemie ("Immobilization of Large, Aliovalent Cations in the Small-Pore Zeolite K-Natrolite by Means of Pressure") that they managed to coax trivalent Eu3+ ions to exchange with K+ ions within the material's nanoscale cavities. The immobilized ions were then trapped within after the pressure was removed.
"With natrolite, people have always said you can't get Eu3+ in there. But under pressure, you can," said Thomas Vogt, one of the co-authors and a professor in the department of chemistry and biochemistry in the College of Arts and Sciences at the University of South Carolina.
The result is counter-intuitive in that the pressure – applied hydrostatically in a diamond-anvil cell and typically exceeding 1 GPa (more than 10,000 atm) – can cause the cavities within natrolite to expand in volume. This auxetic behavior essentially opens a window for larger ions to migrate within the pores, and then they remained trapped there after the pressure is released, said Vogt.
The exchange of europium ions shows promise for nuclear waste processing. "The Eu3+ radius is 108.7 picometers, which is close to the 103 picometers of U4+," Vogt said. "And we've demonstrated we can exchange Eu3+ for K+ – the aliovalent exchange replaces 90% of the potassium."
Beyond that, Vogt thinks studying the behavior of natrolite under pressure could afford insight for researchers working to better understand the workings within the earth's crust. "We've developed the picture of how applying pressure leads to this non-intuitive volume increase and even uptake of water," he said. "And these are common materials in the earth's crust. Mineralogy, tectonics, even fracking – there are a lot of areas where the results could be of interest."
Source: By Steven Powell, University of South Carolina
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.