Posted: April 3, 2008

Cancer can't hide from light of nanobiophotonics

(Nanowerk News) People reap the benefits of the harvesting of photons every day. Printers, DVD players, remote controls, lasers, sensors, and other similar devices all are based on photonics. But Paras Prasad, director of the Institute for Lasers, Photonics, and Biophotonics (ILPB) at the University at Buffalo, says there is much more to learn about the interaction of light with materials and its role in biomedical research. Prasad will discuss this topic at the Johns Hopkins 2008 NanoBio Symposium on May 1-2, hosted by the Institute of NanoBioTechnology.
“Photonics, in a broad sense, deals with the emission, transmission, amplification, detection, modulation, and switching of light,” says Prasad. Through this manipulation of light, scientists and engineers are using photonics to discover new ways to deal with problems such as the diagnosis and treatment of disease or the generation and storage of energy.
For example, researchers at the University of Buffalo’s Institute for Lasers, Photonics, and Biophotonics have developed special kinds of plastic-based nanocomposites that can be fabricated into many structures and designs, including more efficient and larger-scale solar panels to gather the sun’s energy over the entire spectrum, including ultraviolet and infrared.
“Such hybrid nanocomposites can be used to harvest solar energy from larger structures in the form of tents, panels and coatings,” Prasad says. Patents in this area are on file and a California-based company is now working to develop its commercial applications.
Also exciting, Prasad says, are the scientific advances in areas that marry biology, nanotechnology and photonics—nanobiophotonics. At this interface of disciplines, scientists and engineers are breaking new ground in the realms of health care and medicine, he says.
For instance, Prasad says, funding from the National Cancer Institute supports a partnership between the UB institute and researchers at Hopkins to develop better ways to diagnose and treat pancreatic cancer. Prasad’s group, together with teams lead by INBT affiliated faculty members Anirban Maitra of the Sol Goldman Pancreatic Cancer Research Center and Martin Pomper at the In Vivo Cellular and Molecular Imaging Center, are working on a project that “accelerates the advance of photonics and nanotechnology out of the lab and into the cancer clinic,” he adds.
Pancreatic cancer is especially deadly, says Prasad, because survival rates are poor, even when a tumor is just barely observable at microscopic scales. Therefore early detection is critical to improve outcomes. The ILPB researchers have shown effective early detection of pancreatic cancer with quantum dots and metallic nanorods that have been conjugated with antibodies that specifically target pancreatic cells.
“We are developing diagnostic and treatment methods for pancreatic cancer that capitalize on our expertise in designing targeted hybrid ceramic-polymeric nanoparticles to better image pancreatic cancer in vivo and to deliver drugs more effectively to treat it,” says Prasad. “It is very exciting to see that these photonic technologies developed at the University at Buffalo are being applied to a disease where the need for earlier detection and more effective treatment is so pressing.”
During his talk, Prasad also plans to highlight other nanobiophotonics research at ILPB including nanoparticles for photodynamic therapy of cancer and the use of nanoparticles in gene therapy particularly in the brain and liver. Prasad says these nanoparticles hold exciting prospects for developing new approaches for dealing with health care concerns with high societal impact, such as obesity, drug addiction and new infectious diseases.
Source: Johns Hopkins University (Mary Spiro)