Posted: November 17, 2008

Polymer films that change color when stretched

(Nanowerk News) Researchers at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan have developed polymer films that change color instantaneously and reversibly in response to changes in the tension applied.
The polymer films were prepared on elastic substrates by spin-coating from solutions of substituted polyacetylenes developed. The color of these polymer films changed instantaneously and reversibly when the polymer films were stretched and contracted using a stretching machine. The change in color was repeatable, and it occurred with the application of a small force of manual stretching.
This technique is expected to be applied to a tension sensor, which visualizes stress easily and which has been difficult to realize.
Chromism of Polymer 1 thin film before and after stretching Chemical structure of Polymer 1
Left: Chromism of Polymer 1 thin film before and after stretching; right: Chemical structure of Polymer 1 (Image: AIST)
History of the Research
Polymeric materials that change color in response to various external stimuli such as heat, light, electric field, and magnetic field have been widely known and applied to various types of display devices and sensors. However, there exist a few polymeric materials that change color in response to mechanical stimuli. If such polymers can be put to practical use, mechanical stimuli can be visualized easily and inexpensively. For example, such polymers can be applied to a tension sensor, which will indicate danger spots evidently by detecting stresses acting on structures of buildings and then indicating them as a change in color. History of Research
It has been difficult to put polyacetylene, which is renowned as a conducting polymer, to practical use because it is not stable in air. However, substituted polyacetylenes into which substituents are introduced are suitable for practical applications because they are stable in air and allow the production of films from their solutions. AIST has been studying the syntheses of new substituted polyacetylenes and control of the optical properties of their films. The studies conducted have yielded the following results: observation of a reversible change in the color of polymers in response to external stimuli such as heat, control of the change in color in response to light, control of rapid chirality inversion, and amplification of chirality by forming higher order structures.
Details of the Research
Polymerization of acetylene substituted with a substituted phenyl group using [Rh(norbornadiene)Cl]2 as a catalyst produces a polymer in which the main chain is in the cis conformation and has a helical structure (a repeating unit of this polymer is shown in chemical structural 1). A film of this polymer was prepared by spin-coating from a chloroform solution of this polymer on a colorless elastic sheet. The color of the obtained film of the substituted polyacetylene was yellow at the time of formation. By stretching this film together with the sheet by using a stretching machine, the substituted polyacetylene molecules were oriented along the direction of stretching. Further stretching led to a color change in the film from yellow to red. Measurement of the ultraviolet-visible absorption spectrum indicated an increase in absorption from approximately 500 to 600 nm. Removal of the tension and contracting the film led to the return of the color of the film from red to yellow, and the absorption spectrum agreed with the spectrum before stretching. Thus, the change in color due to stretching and contracting was reversible.
The color of the film changed instantaneously in response to quick manual stretching and contraction. The change in color was repeatable, that is, the change in color between yellow and red could be repeated by stretching and contraction repeatedly.
In addition, it was found that the change in color depended not on the stretching ratio but on the tension applied.
Although the mechanism involved in this color change has not yet been revealed, it is speculated that this color change is a result of a change in the conjugated system of the main chain due to the change in length of the polymer molecules associated with the stretching and contraction of the film.
Films prepared from other substituted polyacetylenes also showed instantaneous reversible changes in color between colorless and yellow or between purple and blue. These changes in color were also repeatable.
Source: AIST