Open menu

Biotechnology News

The latest news about biotechnologies, biomechanics
synthetic biology, genomics, biomediacl engineering...

Posted: Jan 27, 2016

Making liver tissue in the lab for transplants and drug screening

(Nanowerk News) Engineered liver tissue could have a range of important uses, from transplants in patients suffering from the organís failure to pharmaceutical testing. Now scientists report in ACSí journal Analytical Chemistry ("On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay") the development of such a tissue, which closely mimics the liverís complicated microstructure and function more effectively than existing models.
The liver serves a critical role in digesting food and detoxifying the body. But due to a variety of factors, including viral infections, alcoholism and drug reactions, the organ can develop chronic or acute problems. When it doesnít work well, a person can suffer abdominal pain, swelling, nausea and other symptoms. Complete liver failure can be life-threatening and can require a transplant, a procedure that currently depends on human donors. To curtail this reliance and provide an improved model for predicting drugsí side effects, scientists have been engineering liver tissue in the lab. But so far, they havenít achieved the complex architecture of the real thing. Jinyi Wang and colleagues came up with a new approach.
Wangís team built a microfluidics-based tissue that copies the liverís complex lobules, the organís tiny structures that resemble wheels with spokes. They did this with human cells from a liver and an aorta, the bodyís main artery. In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations.
The researchers conclude their approach could lead to the development of functional liver tissue for clinical applications and screening drugs for side effects and potentially harmful interactions.
Source: American Chemical Society
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: