Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Jul 30, 2012

Materialwissenschaften und Quantenphysik: Magnetismus in zwei Dimensionen

(Nanowerk News) Wie macht sich Quantenphysik im täglichen Leben bemerkbar? Dadurch, dass Materialeigenschaften eng mit den quantenphysikalischen Wechselwirkungen zwischen Atomkernen und Elektronen verknüpft sind, was auch als "chemische" Bindung bezeichnet wird. Raimund Podloucky vom Institut für Physikalische Chemie der Universität Wien fand zusammen mit Kollegen der TU Wien und der University of Wisconsin-Milwaukee (USA) nun eine starke Abhängigkeit zwischen atomarer Struktur und magnetischer Ordnung in einer zweidimensionalen Kobaltoxid-Oberflächenschicht. Sie publizieren dazu im renommierten Fachjournal Physical Review Letters ("Strain and Structure Driven Complex Magnetic Ordering of a CoO Overlayer on Ir(100)").
Was steckt hinter der "chemischen" Bindung? "Zur Wellennatur der Elektronen kommt der sogenannte Spin als magnetische Quanteneigenschaft hinzu", erklärt Raimund Podloucky vom Institut für Physikalische Chemie der Universität Wien. Zusammen mit seinen Kollegen von der Technischen Universität Wien (Florian Mittendorfer und Josef Redinger) und der University of Wisconsin-Milwaukee, USA (Michael Weinert) zeigt er, wie sich Quantenphysik in messbaren Materialeigenschaften bemerkbar macht. Vereinfachend kann man einem Atom eine lokale Größe – das magnetische Moment – zuordnen, wenn sich Elektronen mit überwiegend einer Spin-Orientierung in der Nähe des Atomkerns aufhalten. Diese magnetischen Momente können sich im Material verknüpfen und zu komplexen magnetischen Anordnungen führen. Die vorliegenden Ergebnisse konnten im Rahmen der vom FWF geförderten Spezialforschungsbereiche ViCoM und FOXSI erzielt werden.
magnetische Kobaltoxidschicht
Illustration einer magnetischen Kobaltoxidschicht (Kobalt: blau, Sauerstoff: rot) auf Iridium (grau). Die verschiedenen Blautöne zeigen die unterschiedliche Orientierung der magnetischen Momente. (Bild: Josef Redinger)
Magnetische Ordnung von Struktur abhängig
"Wir haben eine einzelne Kobaltoxidschicht von atomarer Dicke auf einer Iridium-Oberfläche untersucht", erklärt Raimund Podloucky. "Unsere Berechnungen haben gezeigt, dass die zweidimensionale magnetische Ordnung der Kobaltatome sehr von der räumlichen Anordnung der Atome in der Oxidschicht abhängig ist. Um diese magnetische Ordnung zu entschlüsseln, braucht man die Theorie, da das Experiment eine solche komplexe Ordnung nicht direkt auflösen kann".
Experiment und Theorie stimmen überein
"Die räumliche Struktur der Oberfläche kann aber gemessen werden", so Raimund Podloucky. Das wurde bereits in einer früheren experimentellen Arbeit von Kollegen nachgewiesen, wobei diese gezwungen waren, 59 strukturelle Parameter zu bestimmen. Diese sehr große Anzahl von Parametern weist auf die Komplexität der Struktur hin. "Die Resultate unserer Berechnung auf Grundlage der Dichtefunktionaltheorie (DFT) stimmen mit allen experimentell ermittelten Werten überein", freut sich der Physiko-Chemiker. "Wir Theoretiker haben außerdem eine zweite, ähnliche Struktur vorhergesagt, die im Experiment dann auch tatsächlich nach unseren Berechnungen entdeckt wurde." Diese Ergebnisse werden demnächst in einer weiteren Publikation erscheinen.
Leistungsfähige Soft- und Hardware
Für solche Rechnungen sind leistungsfähige Computerprogramme nötig: "Uns steht ein solcher in Form des weltweit bekannten VASP-Pakets (Vienna Ab-initio Simulation Package) zur Verfügung", so Raimund Podloucky. VASP ist eine Entwicklung der Gruppe von Georg Kresse, Professor für Materialphysik an der Universität Wien. "Neben der Kooperation mit Georg Kresse ist vor allem die Ausstattung mit Hardware-Ressourcen, die uns vom Vienna Scientific Cluster (VSC) bereitgestellt werden, für unsere Arbeit wichtig."
Anwendungen in der Materialwissenschaft
Die Forschung im Rahmen der grundlagenorientierten Materialwissenschaften ist nicht nur von rein wissenschaftlichem Interesse. Anwendungsbereiche für Kobaltoxidschichten finden sich in der Katalyse, der Sensortechnik, der Batterietechnologie sowie in der Nanomagnetik. "Die von uns gefundene, sehr starke Verknüpfung von Struktur und magnetischer Ordnung könnte in diesen Bereichen von großem Nutzen sein", betont der Physiko-Chemiker.
Source: Universität Wien
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: