Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Sep 19, 2012

Physiker entwickeln hocheffizienten Mikrowellen-Detektor für Quantencomputer

(Nanowerk News) Die Quantenforschung nutzt zur Übertragung von Informationen nicht nur Photonen des sichtbaren Lichts, sondern zunehmend auch Teilchen von Mikrowellenstrahlung. Sie sind etwa für Prozessoren von Quantencomputern von Bedeutung. Physikern der Universität des Saarlandes ist es nun erstmals gelungen, einen Photodetektor für Mikrowellen zu entwickeln, der mit nahezu hundertprozentiger Effizienz arbeitet. Die wissenschaftliche Arbeit wurde jetzt in Physical Review A ("Theory of Josephson photomultipliers: Optimal working conditions and back action") publiziert.
Die Quantenkommunikation nutzt einzelne Lichtteilchen, um Informationen zu übertragen. Dabei werden die Lichtteilchen von Photodetektoren in elektrische Signale umgewandelt. Die physikalische Messgrenze der Strahlungsmessung ist dann erreicht, wenn einzelne Photonen, also unteilbare Einheiten der Strahlung, detektiert werden können. Bisher setzte man hierzu meist Photonen im Bereich des sichtbaren Lichts ein.
Mikrowellen-Photodetektor
Der neue Mikrowellen-Photodetektor. (Foto: Robert McDermott)
Seit einigen Jahren nutzen Wissenschaftler aber auch Photonen mit Mikrowellenstrahlung mit Frequenzen, wie sie etwa beim Handy vorkommen (1 bis 300 Gigahertz). Die Erzeugung und die Messung der Photonen findet dabei auf einem winzigen Computerchip statt, bei Temperaturen nahe des absoluten Nullpunkts (-273 Grad Celsius).
"Lange galt es aber als prinzipiell unmöglich, einzelne Quanten von Mikrowellen zu zählen, da deren Energie rund 100.000 mal schwächer ist als die Energie von Lichtteilchen aus einer Glühbirne", erklärt Frank Wilhelm-Mauch, Professor für Theoretische Physik an der Saar-Uni.
Gemeinsam mit Kollegen aus Kanada und Wisconsin ist ihm bereits im vergangenen Jahr jedoch genau das gelungen: Die Wissenschaftler entwickelten ein elektronisches Bauelement, das einzelne Mikrowellenphotonen detektieren kann. Dieser so genannte Josephson-Photomultiplikator bildet die Arbeitsweise normaler Photonendetektoren in einem kompakten elektronischen Bauelement nach.
Nun hat Frank Wilhelm-Mauch zusammen mit dem Gast-Masterstudenten Luke Govia und der Postdoktorandin Emily Pritchett den Detektor so weiterentwickelt, dass er Photonen mit nahezu hundertprozentiger Effizienz nachweisen kann. Dabei kommt ein besonderes Merkmal der Quantenphysik, also der Physik der kleinsten Teilchen, ins Spiel: Die Teilchen – Photonen oder Atome – können in der Quantenwelt mehrere Zustände gleichzeitig einnehmen. Sobald eine Messung erfolgt, bleibt nur noch ein einziger Zustand übrig: der ermittelte Messwert.
"Praktisch bedeutet das, dass sich Zustände von Quantensystemen bei der Beobachtung verändern", erläutert Frank Wilhelm-Mauch.
Für einen optimalen Detektor möchte man diese Veränderung so klein halten, wie es die Gesetze der Physik fordern. So soll nur die Information aus dem Quantenzustand verloren gehen, die man auch abgelesen hat. Die Wissenschaftler der Saar-Uni zeigen in ihrer Arbeit, wie das möglich ist: Man unterdrückt Quanteneffekte bereits im Detektor. Dieser unterscheidet also nicht viele verschiedene Zustände eines Photons, sondern nur zwischen weiß und schwarz, also: Ich habe Photonen oder nicht.
"Gelungen ist uns das, indem wir einen elektrischen Widerstand an der richtigen Stelle eingebaut haben", meint Wilhelm-Mauch.
Die Saarbrücker Physiker erwarten, dass diese Detektoren einerseits eingesetzt werden, um Elemente von Prozessoren in Quantencomputern zu vernetzen. Andererseits erlaubt diese Messung von Mikrowellen am Quantenlimit auch Anwendungen in der Astrophysik bei der Erforschung der kosmischen Hintergrundstrahlung oder der Suche nach dunkler Energie.
Source: Universität des Saarlandes
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.