First awards granted for the NSF Designing Materials to Revolutionize and Engineer our Future program

(Nanowerk News) The National Science Foundation (NSF), in support of the multi-agency, federal Materials Genome Initiative (MGI), has now granted the first awards for the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.
The NSF Mathematical and Physical Sciences (MPS) and Engineering (ENG) Directorates invested a total of just over $12 million for 22 grants in support of 14 distinct DMREF projects intended to yield a range of new developments, including new lightweight yet rigid polymers; highly durable, multi-layered materials for aircraft engines and power plants; new data storage technology based on spin electronics; composites for converting heat to electricity; novel designer glasses; membranes that function as well as biological counterparts; new techniques to develop exceptionally hard coatings; and many others.
DMREF grantees, in collaboration with industry partners, are targeting one of the primary MGI goals: To halve the current time and cost for transitioning breakthroughs from the laboratory to the marketplace--a process that can take as long as two decades.
DMREF involves the development of new physically based and verified computational tools to accelerate the discovery, development and property optimization of new materials and systems. That requires an understanding of how to synthesize and process materials to achieve desired properties and performance. Coupling those new materials with advanced manufacturing tools will accelerate their introduction into products, and at a lower cost than through standard approaches.
"The driving force behind MGI and DMREF is a materials innovation infrastructure in which a new understanding of physical and chemical processes, properties and materials performance drives the development and validation of next-generation algorithms and software," says Ian Robertson, director of NSF's Division of Materials Research. "Experimental and computational approaches are key to DMREF, which along with the emerging field of materials informatics, work in a synergistic partnership, each challenging and pushing the other in new directions. Success for DMREF and MGI hinges on the success of that partnership."
DMREF is guided by the concept of materials-by-design, an approach where researchers model unique, new materials that offer the particular structure and properties desired, and then craft the materials--for some technologies, beginning even below the nanometer scale. Researchers refine the materials throughout the design process, but with greater understanding and control than many traditional approaches, yielding a faster delivery time to get the material to market.
Three of the projects are co-funded through NSF's Grant Opportunities for Academic Liaison with Industry (GOALI) program, which links university researchers with industry partners, enabling joint university-industry research and allowing university researchers and students access to industry facilities.
"A key element of the DMREF effort is to foster discoveries that lead to effective tools and methods for materials scientists and engineers to utilize in design and practice--as well as for further research endeavors," says Steven McKnight, director of NSF's Division of Civil, Mechanical and Manufacturing Innovation. "To do this effectively and rapidly, partnerships between NSF-sponsored investigators and students and their industry partners are essential to communicate both critical needs and emerging opportunities from DMREF research discoveries. The use of the GOALI program provides those opportunities for DMREF grantees."
MGI, coordinated by an interagency subcommittee chaired by Cyrus Wadia, Assistant Director for Clean Energy and Materials R&D at the White House Office of Science and Technology Policy, consists of the National Science Foundation, the Department of Energy, Department of Defense, and National Institute of Standards and Technology. The total investment in MGI is expected to be $100 million.
Source: National Science Foundation