Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Nov 11, 2012

Scientists produce efficient nanocatalysts for methane partial oxidation

(Nanowerk News) Researchers from Tarbiat Modarres University and Research Institute of Petroleum Industry developed the technical know-how for the process of dry combination conversion and methane partial oxidation by synthesizing perovskite nanocatalysts through sol-gel method (see paper in International Journal of Hydrogen Energy: "Synthesis, characterization and catalytic study of Sm doped LaNiO3 nanoparticles in reforming of methane with CO2 and O2").
Selectivity of the products, decreasing the produced coke and optimization of energy consumption in the reactor are among the characteristics of the plan, which can be applied in petroleum, gas and steel industries.
Dry conversion of methane is a process that has not been industrialized yet due to the high amount of the produced coke. However, it is necessary in some processes such as Fischer-Tropsch that produces valuable products because the ratio of hydrogen to carbon monoxide is equal to one in it. Therefore, excess oxygen is added to the feed in order to decrease the energy consumption and coke production in the process.
The three properties of resistance against the formation of coke and agglomeration, high yield of methane conversion and carbon dioxide, and durability in reactor long-term tests show the better performance of this process in comparison with the results obtained from catalysts for methane combination conversion process.
Perovskite catalysts include elements of lanthanides group and they have high alkaline characteristics, which result in the adsorption of CO2 and increase its yield but decrease the production of coke. In the other hand, perovskite structures have high oxygen storage capacity in addition to their high mechanical and thermal stability. Such features increase the catalytic activity of these components. Moreover, the presence of transition metals such as nickel in the structure of these materials increases their oxidative-reductive properties, which results in an increase in the catalytic activity too.
Source: INIC
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.