Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Mar 07, 2013

Diamantene Drähte

(Nanowerk News) Kohlenstoff-basierte Nanomaterialien zeigen einzigartige Eigenschaften, die sie interessant für vielfältige technische Anwendungen machen, z.B. in Leichtbau und Elektronik, Energie-, Umwelt- und Medizintechnik. Ein internationales Forscherteam stellt in der Zeitschrift Angewandte Chemie ("Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid") jetzt einen neuen Ansatz zur Herstellung besonders feiner Nanodrähte aus Kohlenstoff in der Diamantkonfiguration vor. Moleküle mit diamantartiger Struktur werden dazu im Innern einer Kohlenstoffnanoröhre miteinander verknüpft.
diamantene Nanodrähte
Das Tempern von Diamantan-4,9-dicarbonsäure in Kohlenstoff-Nanoröhren unter Wasserstoffatmosphäre lieferte Kohlenstoff-Nanodrähte (siehe Schema), bei denen es sich nach HR-TEM-Aufnahmen, Raman-Spektren, den nach Bestrahlung mit einem intensiven Elektronenstrahl beobachteten Strukturumwandlungen und in Einklang mit Rechnungen wohl um Diamant-Nanodrähte mit sp3-Hybridisierung handelt.
Aus Anlass des 125. Jahrganges der Zeitschrift findet am 12.3. ein ganztätiges Festsymposium statt, bei dem mehrere Nobelpreisträger sprechen. Erfahren Sie mehr und verfolgen Sie es kostenlos live im Internet unter chemistryviews.org/angewandtechemie125.
Kohlenstoff kann in verschiedenen Formen vorkommen, von denen Graphit und Diamant die bekanntesten sind. Während Graphit aus zweidimensionalen wabenartigen Kohlenstoff-Schichten besteht, sind Diamanten dreidimensionale käfigartige Gerüste aus gewellten Kohlenstoffsechsringen. Daneben ist inzwischen eine Vielzahl neuer Nano-Konfigurationen bekannt: Fullerene, Kohlenstoffnanoröhrchen, Graphen (Graphit-Monoschichten), Nanodiamanten und Diamantoide. Diamantoide sind eigentlich mineralische Cycloalkan-Moleküle mit einem Kohlenstoffgerüst, das wie bei Diamant aus "Käfigen" aufgebaut ist. Sie lassen sich als Miniatur-Diamanten auffassen, an deren Aussenflächen Wasserstoff gebunden ist.
Für viele Anwendungen im Nanomassstab braucht man nanoskopische Drähte. Verschiedene Typen wurden bereits hergestellt, inzwischen auch Nanodrähte aus Kohlenstoff in der Diamant-Konfiguration mit ca. 50 bis 100 nm Durchmesser. Das Forscherteam aus Japan, China, Deutschland und den USA wollte mit den Dimensionen noch weiter bin in den sub-Nanometerbereich heruntergehen. Solche winzigen Drähte könnten als Spitze für Rastersondenmikroskope interessant sein, Geräten, mit denen die Topologie einer Oberfläche in extrem hoher Auflösung "abgetastet" und dann abgebildet werden kann.
Die Idee der Forscher um Hisanori Shinohara von der Universität Nagoya (Japan) war, Diamantoide zu langen, superdünnen Drähten zu fusionieren. Damit dies gelingt, mussten sie zu einem Trick greifen: Kohlenstoffnanoröhrchen, die als "Gussform" dienen. Als Ausgangsmaterial wählten die Wissenschaftler Diadamantan, ein Diamantoid aus zwei diamantartigen Käfigen. An beiden Seiten statteten sie das Molekül mit je einer Carbonsäure-Gruppe aus. Für die Synthese werden die Moleküle in die Dampfphase überführt. Sie werden dann wie durch Kapillarkräfte in die winzigen Kohlenstoffnanoröhren hineingesaugt. Als geeignet erwiesen sich Röhrchen mit einem Innendurchmesser von ca. 1,3 nm. Im Innern der Röhrchen richten sich die Diamantoide wie Perlen auf der Schnur aus. Erhitzen auf etwa 600 °C unter Wasserstoffatmosphäre führt zu einer Polymerisation, bei der die einzelnen Diamantoid-Moleküle sich über ihre Carbonsäure-Gruppen zu einem langen, ca. 0,78 nm dünnen "Draht" verbinden. Die käfigartige Struktur bleibt erhalten.
Mithilfe theoretischer Berechnungen und verschiedener analytischer Methoden konnten die Wissenschaftler belegen, dass der Kohlenstoff in den Drähten tatsächlich in einer diamantartigen Konfiguration vorliegt.
Derzeit arbeiten die Wissenschaftler eine Ultraschall-Technik aus, mit der die Nanodrähte aus den umhüllenden Nanoröhrchen freigesetzt werden können.
Source: Gesellschaft Deutscher Chemiker
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.