Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Oct 31, 2013

Micromotors mix for more effective oxidative degradation of chemical weapons

(Nanowerk News) Rapidly and efficiently converting chemical weapons into nontoxic products in remote areas is one of the most difficult tasks in the disposal of weapons of mass destruction. In the journal Angewandte Chemie ("Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats"), a team from the University of California, San Diego has now described how self-propelled micromotors can accelerate the oxidative neutralization of nerve agents by intensively mixing the remediation solution.
Oxidative decontamination
Oxidative decontamination: An effective strategy for the oxidative neutralization of organophosphorus nerve agents that is based on self-propelled micromotors has been developed. The movement of multiple motors across a peroxide-activated contaminated solution enhances the decontamination efficiency compared with common neutralization processes for chemical warfare agents. (© Wiley-VCH)
Environmentally friendly processes that use hydrogen peroxide and an activator (e.g. sodium bicarbonate) to degrade chemical weapons like sarin, VX, soman, and mustard gas have recently replaced earlier chlorine-based methods. However, they generally require high concentrations of peroxide, long reaction times, and intensive mechanical mixing—which can be extremely problematic in the elimination of stocks of chemical weapons in remote regions or enemy camps.
A team headed by Joseph Wang has now developed a novel strategy based on mixing of the remediation solution with self-propelled micromotors. The motors are tiny conical tubes made from a bilayer with a polymer on the outside and platinum on the inside. In this process, hydrogen peroxide acts as both the oxidizing agent for the chemical weapons and fuel for the micromotors. As the hydrogen peroxide is catalytically decomposed on the inner platinum surface, oxygen bubbles are formed. The bubbles exit the tubes at their rear (wider) end, pushing them through the liquid. The movement of the motors through the liquid combined with the gas bubbles provides for efficient mixing of the remediation solution. This significantly increases both the turnover and the speed of the decontamination reaction without requiring high concentrations of peroxide.
Wang’s team was able to demonstrate the efficiency of their new method by breaking down a variety of organophosphate pesticides with chemical structures similar to those of organophosphate nerve agents. In a demonstration reaction, 1.5 million micromotors in a volume of about 15 mL achieved mixing comparable to a magnetic stirrer at 200 revolutions per minute.
The concept of mixing through the movement of self-propelled micromotors is not limited to the neutralization of chemical weapons. It could also be used to accelerate chemical reactions in general. This could be useful in applications like microreactors, where mechanical mixing is often difficult.
Source: Wiley
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.