Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Nov 04, 2013

Stretchable nanotechnology energy sources

(Nanowerk News) Advances in flexible and stretchable electronics have prompted researchers to explore ways to create stretchable supercapacitors — robust energy storage devices — to power these and other devices.
Supercapacitors offer significant advantages over common batteries, including the ability to recharge in seconds, exceptionally long life span and high reliability, leading to their incorporation in portable consumer electronics, memory backup devices, hybrid vehicles and even large industrial scale power and energy management systems.
Wire-shaped supercapacitors, in particular, have attracted attention for uses in wearable energy devices.
University of Delaware professors Tsu-Wei Chou and Bingqing Wei have successfully developed a compact, stretchable wire-shaped supercapacitor (WSS) based on continuous carbon nanotube (CNT) fibers.
Chou, Pierre S. du Pont Chair of Engineering, is an internationally-known composites expert who specializes in using carbon nanotube fibers for multifunctional composites and energy storage devices. Wei, professor of mechanical engineering, has expertise in creating scalable power sources for stretchable electronics.
They used a prestraining-then-buckling approach to fabricate the wire-shaped supercapacitor using a Spandex fiber as the substrate, a polyvinyl alcohol-sulfuric acid gel as the solid electrolyte, and carbon nanotube (CNT) fibers as the active electrodes.
When subjected to a tensile strain of 100 percent over 10,000 charge/discharge cycles, the CNT supercapacitor’s electrochemical performance improved to 108 percent, revealing its excellent electrochemical stability.
Wei, who credits the supercapacitor’s performance to the intrinsic mechanical and physical properties of the flexible CNT fibers, said, “The network of individual CNTs and their bundles endow the fibers with the capacity to withstand large deformation without sacrificing mechanical properties, electrical conductivity, and electrochemical properties.”
“This unique combination of outstanding electrochemical performance and stretchability may enable the integration of wire-shaped supercapacitors with wearable, miniaturized and portable electronic devices,” said Chou.
The professors recently published their findings in Advanced Energy Materials ("Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors"). The first author on the paper was Ping Xu, a visiting student from Donghua University in Shanghai, China.
Source: By Karen B. Roberts, University of Delaware
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.