Nanotechnology Research - Universities

 

Showing results 141 - 150 of 493 of university labs in USA:

 
A state-of-the-art laboratory in the Department of Materials Science and Engineering at MIT for probing the properties and surfaces of engineering and biological materials at atomic and molecular length scales through mechanical contact.
The research group of Prof. Nicholas Fang is dedicated to multidisciplinary fields including nano-optics, photonic/acoustic metamaterials, as well as life sciences. They aim to study the fundamental physics of nano-optics and its application in super-resolution imaging, high-speed/low-cost optical modulation device, high sensitivity biology sensor, etc. High-throughput micro/nano-fabrication techniques are developed to manufactore novel 2D/3D structures. They are the pioneer of acoustic metamaterial study to demonstrate the negative index and super-resolution focusing in ultrasonic wave.
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale.� Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art.� They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Their research is focused on fabrication of devices that exploit the quantum-mechanical properties of materials. Because superconductors provide an ideal medium for studying quantum mechanics in the solid state, they focus on superconductive materials.
A cross-disciplinary research lab at MIT inventing self-assembly and programmable material technologies aimed at reimagining construction, manufacturing, product assembly and performance.
The SNL is the premier laboratory in the world for research in interference lithography and diffraction grating fabrication.
The Strano group at MIT is interested in understanding the chemical and physical interactions that govern our ability to manipulate nanotube and nanoparticle systems, particularly those that are carbon based, for desired applications.
This inter-departmental Center brings together, MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies. The Center explores advanced technologies and strategies that enable graphene-based materials, devices and systems to provide discriminating or break-through capabilities for a variety of system applications ranging from energy generation and smart fabrics and materials, to RF communications and sensing.
The Montana Microfabrication Facility is a resource for Montana State University, external academics, and commercial entities that provides affordable access to a range of micro and nanofabrication equipment. They support applications ranging from fundamental physics to biology, microfluidics, MEMS and MOEMS, and sensors. The facilities include 2,200 square feet of Class 1,000 and Class 10,000 cleanroom laboratories with broad capabilities in lithography, thin film deposition, thermal processing, wet and dry etching, packaging, and testing.
This facility is dedicated to the growth and characterization of magnetic films, magnetic particles, and magnetic interfaces with the goal of understanding their intrinsic behavior. A technological example of the utility of such films is in non-volatile magnetic random access memories (MRAM), high density archival storage, and magnetic nano-particle based sensors.