Nanowerk

Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research - Universities

 

Showing results 31 - 40 of 549 for universities in USA:

 
The R. Hurt laboratory at Brown focuses on the creation of 3D nanomaterial architectures and new nano-enabled technologies. They also study the potential adverse effects of emerging 2D nanomaterials on human health and the environment and work to identify safe design rules rooted in fundamental materials chemistry and physics that will enable their successful development and commercialization.
Research and education carried out in this laboratory are associated with the experimental, computational and conceptual study of nanomechnics and micromechanics of materials
The research group of Prof. Shouheng Sun is interested in nanoscale materials synthesis, self-assembly and applications in biomagnetics, catalysis, information storage and magnetic nanocomposites
Prof. Webster directs the Nanomedicine Laboratory which designs, synthesizes, and evaluates nanomaterials for various implant applications. Nanomaterials are central to the field of nanotechnology and are materials with one dimension less than 100 nm. Tissues investigated include bone, bladder, vascular, cartilage, dental, and the nervous system.
Nanofabrication manufacturing technology relates to the creation of microscopic structures. This technology is the basis of such diverse areas as computer chip manufacturing, flat panel displays and large scale solar power arrays used in space exploration, biological implants, medicine and pharmaceuticals. Rapid growth in these industries has created a strong demand for technicians with training in the intricacies of nanofabrication techniques and clean room procedures. Students enrolling in either program will spend three semesters on BCCC campus and the final capstone semester on Penn State campus.
Nanofabrication manufacturing technology relates to the creation of microscopic structures. This technology is the basis of such diverse areas as computer chip manufacturing, flat panel displays and large scale solar power arrays used in space exploration, biological implants, medicine and pharmaceuticals. Rapid growth in these industries has created a strong demand for technicians with training in the intricacies of nanofabrication techniques and clean room procedures. Students enrolling in either program will spend three semesters on BCCC campus and the final capstone semester on Penn State campus.
The Atwater research group at Caltech is engaged in interdisciplinary materials and device research, spanning photonics and electronics and with applications in Si-based photonics, plasmonics, renewable energy and mechanically active thin film devices.
Research covers nanobiotechnology, nanophotonics and large-scale integration of nanosystems.
The objectives of the MSC are to develop methods required for first principles multiscale multi-paradigm based predictions of the structures and properties of proteins, DNA, polymers, ceramics, metal alloys, semiconductors, organometallics and to apply these methods to design new materials for pharma, catalysis, microelectronics, nanotechnology, and superconductors.
In the Molecular Programming Project (MPP) at the California Institute of Technology and the University of Washington, scientists will develop new computer science principles for programming information-bearing molecules like DNA and RNA to create artificial biomolecular programs of similar complexity.
 
 
left arrowBack to Nanotechnology Links Directory