Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 73 - 80 of 2416 in category All (newest first):

 

Buckled graphene provides an alternative for strongly correlated phenomena in graphene

graphene-bucklesPeriodically strained graphene harbors correlated electronic phases similar to those previously observed in magic angle twisted bilayer graphene. By precisely rotating two stacked sheets of graphene one can induce superconducting and insulating phases depending on the electric density. This behavior is extremely desirable because it significantly reduces energy losses in electronic devices making them more efficient and durable. Researchers have now proposed an alternative way to obtain similar phases. Their approach relies on periodically straining a graphene sheet rather than stacking layers on top of each other.

Aug 13th, 2020

Probing plant health status using flexible sensor systems

plant-sensorResearchers report an integrated multimodal flexible sensor system comprising a room humidity sensor, a leaf humidity sensor, an optical sensor, and a temperature sensor that can tap into potential physiological health issues of plants. Using stacked ZIS nanosheets as the kernel sensing media, the flexible sensor can not only perceive light illumination at a fast response, but also monitor the humidity with a perdurable steady performance. The researchers measured in real time three primary abiotic stresses - i.e. humidity, light and temperature - that govern the transpiration of plants are measured without signal cross-coupling effect.

Aug 12th, 2020

Nanocoatings could prevent bird-strikes

birdstrikeTo birds, trees and sky reflected in glass appear to be habitat. They fly into windows at high speeds, and the loss of life is staggering. Unlike humans, most birds can see UV light. It therefore stands to reason that applying UV-reflecting coatings or patterns on windows and glass buildings can be particularly advantageous to prevent bird strikes. Tuning the UV reflectance properties of window glass (or any other surface for that matter) could result in higher UV reflectance that could be noticed by birds and potentially reduce bird-strike incidences, particularly in high-rise buildings and airplanes.

Aug 11th, 2020

Bilateral interface engineering for efficient and stable perovskite QLEDs

QLEDPerovskite QLEDs possess the features of wide gamut and real color expression; that's why they have been considered as very promising candidates for next-generation high-quality lighting and displays. However, device efficiency and stability of perovskite QLEDs has always been a major challenge. Researchers now report a new passivation technique that greatly enhances device performance and stability compared to single interface processing.

Aug 10th, 2020

Using machine intelligence to find the charge density wave phases of any 2D material

machine-learningCharge density wave (CDW) is a quantum mechanical phenomenon, which induces distortion in the crystal structures of some low-dimensional (1D or 2D) metals, when the temperature is reduced. Such distorted crystal structure is known as CDW phase and its resistivity is much higher than the original symmetric phase. Since the switching between symmetric and CDW phase can also be made by the application of external electric field, these materials are technologically important and have attracted immense attention in the nanoelectronics community.

Aug 6th, 2020

3D-printed nanoscale color pixels improve brightness control

display-pixelsResearchers have fabricated nanoscale color pixels that utilize three-dimensional space to improve and control the brightness of individual pixels with nanoscale lateral dimensions. Specifically, this novel method utilizes 3D printing of vertically freestanding nanostructures containing red, green, or blue light-emitting quantum dots embedded in polymer nanowires. The emission brightness of the pixels linearly increases with the height of the pixels due to the increase in the number of quantum dots due to the increased volume. The 3D geometry enables a 2-fold increase in brightness without causing significant changes in the lateral dimensions of the pixel.

Aug 5th, 2020

A low-temperature bubble-generating system for enhanced surface capture of proteins

microbubblesConventional optothermal microbubble assisted bio-sensing is not suitable for protein sensing due to the high temperatures over 100 dgrees C. To overcome this problem, researchers have demonstrated a proof-of-concept study that reduces the working temperature of bubble generation simply by introducing a volatile, water-immiscible liquid into an aqueous medium. This enables the generation of bubbles at a much lower temperature of around 30 degrees C, not only making this sensing platform compatible with proteins but also enhancing the surface capture of proteins.

Jul 27th, 2020

A virus-based colorimetric sensor

sensorResearchers have turned to M13 bacteriophages as a sensing layer for colorimetric sensors. M13 is a nanoscale, benign virus with a shape that closely resembles collagen fibers. It can change its structure by shrinking or expanding in response to a changing surrounding environment. By using a highly lossy resonant promoter as the substrate, the spin-coated M-13 virus layer exhibits strong resonance even with ultrathin thickness variations, resulting in colorimetric behavior with enhanced chromaticity.

Jul 24th, 2020