Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1033 - 1040 of 2140 in category (newest first):

 

Avoiding allergic drug reactions with a supramolecular string of pearls

polycationic_ligandsHeparin is widely used as an anti-coagulant to prevent the formation of blood clots. This naturally occurring biological molecule is commonly used during surgery for blood thinning. At the end of surgery, heparin has to be removed in order to allow the blood to clot again - this is currently done using a protein called protamine, the only clinically approved heparin binder. Unfortunately, protamine can cause severe allergic reactions in a number of patients. Researchers at the University of York have now developed a synthetic molecule which is capable of binding heparin just as effectively as protamine. The team's approach may eventually be useful for developing protamine replacements.

May 2nd, 2011

Life cycle assessment shows high energy requirements for fullerene production

fullereneThere is a general perception that nanotechnologies will have a significant impact on developing 'green' and 'clean' technologies with considerable environmental benefits. However, the environmental footprint created by today's nanomanufacturing technologies are conflicting with the general perception that nanotechnology environmentally benign. It actually appears that certain nanomaterial production technologies are quite dirty and also have a considerable energy footprint. Determining the full environmental impact of nanomaterials requires a full life cycle assessment. A recent paper takes a look at the material and energy intensity of fullerene production. It finds that the embodied energy of all fullerenes are an order of magnitude higher than most common chemicals.

Apr 20th, 2011

Novel hybrid graphene materials for solar cell applications

graphene_solar_applicationThe extremely high electron mobility of graphene - under ideal conditions electrons move through it with roughly 100 times the mobility they have in silicon - combined with its superior strength and the fact that it is nearly transparent (2.3 % of light is absorbed; 97.7 % transmitted), make it an ideal candidate for photovoltaic applications. Recent research suggests, though, that doping is a necessity to harvest the full potential of graphene. The challenge then for researchers is to find suitable fabrication techniques for high-quality graphene flakes that exhibit high charge mobilities. Researchers now present a chemical approach towards non-covalently functionalized graphene, which is generated from vastly available and low-priced natural graphite.

Apr 19th, 2011

Self-sintering conductive inks simplify printing of plastic electronics

nanoparticle_sinteringInk-jet printing of metal nanoparticles for conductive metal patterns has attracted great interest as an alternative to expensive fabrication techniques like vapor deposition. The bulk of the research in this area focuses on printing metal nanoparticle suspensions (metallic ink) for metallization. Printing conductive features by metallic nanoparticle inks must be followed by an additional step of sintering, usually achieved by heating to elevated temperatures. In this step, the nanoparticles composing the pattern will coalesce to form a continuous electrical contact. In new work, researchers have now demonstrated a new conductive ink that won't require a post printing sintering step. It is achieved by the addition of a latent sintering agent that gets into action after the printing step. Once the solvent evaporates, the sintering agent concentration increases, leading to the spontaneous sintering of the nanoparticles.

Apr 18th, 2011

Why we don't need a regulatory definition for nanomaterials

regulationsEngineered nanomaterials present regulators with a conundrum - there is a gut feeling that these materials present a new regulatory challenge, yet the nature and resolution of this challenge remains elusive. But as the debate over the regulation of nanomaterials continues, there are worrying signs that discussions are being driven less by the science of how these materials might cause harm, and more by the politics of confusion and uncertainty. Yet the more we learn about how materials interact with biology, the less clear it becomes where the boundaries of this class of materials called "nanomaterials" lie, or even whether this is a legitimate class of material at all from a regulatory perspective.

Apr 15th, 2011

Nanoporous quantum filters - inside the fascinating and weird world of confined quantum particles

carbon_nanotubesOne of the problems in modern separation science and technology is the challenge of separating gaseous mixtures that consist of very similar particles, for example, hydrogen isotope mixtures; mixtures of noble gases; etc. The problem arises because small particles such as hydrogen isotopes share similar size and shape (only their molecular mass is different). While this problem can be technically solved, currently available separation methods such as thermal diffusion, cryogenic distillation, and centrifugation, tend to be time and energy intensive. New theoretical work now shows that narrow carbon nanotubes (CNTs) seem to be an attractive alternative. By using CNTs as nanoporous molecular sieves, the separation of parahydrogen molecules from mixtures of classical particles at cryogenic temperatures seems to be possible.

Apr 14th, 2011

Low-cost printing technique for a new generation of complex, flexible sensors

flexible_electronicsPrinted electronics is one of the most important new enabling technologies. It will have a major impact on most business activities from publishing and security printing to healthcare, automotive, military and consumer packaged goods sectors. With recent advances, power and energy storage can be integrated into the printing process, making their potential applications even more ubiquitous. Currently, though, the more complex printed components that require a combination of different class of devices, still experience drawbacks in performance, cost, and large-scale manufacturability. Researchers have now succeeded in fabricating a multi-component sensor array by simple printing techniques - all components (polymer sensor array, organic transistors, electrochromic display) are integrated on the same flexible substrate.

Apr 13th, 2011

Shooting videos in the nanoworld to observe nanoscale processes

nanodropletLife as we know it is dominated by friction, the interaction between moving objects. Friction controls our everyday lives, from letting us walk to work, to holding a cup of tea. Friction forces act wherever two solids touch. Although friction has been investigated for hundreds of years - in the 15th century, Leonardo da Vinci was the first to enunciate two laws of friction - it is surprisingly difficult to examine how friction works at the nanoscale level due to the sheer difficulty of bringing nanoscale objects into contact and imaging them at the same time. Researchers have now demonstrated the ability to bring nanoscale objects together, rub them repeatedly across one another and see how friction changes nanosized materials in real time.

Apr 12th, 2011