Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 113 - 120 of 2140 in category (newest first):

 

Wood nanotechnology for selective oil/water separation

microporesCellulose aerogels, made from nanofibrils found in plants, have several unique features, one of which is super high oil absorption capacity that is several times higher than commercial sorbents available in the market. Researchers have created wood-based structures for oil/water separation, utilizing the native feature of wood, i.e. its tubular porosity and hierarchical organization. The novelty here is the development of new processing routes for hierarchical wood structures scaled from nano-, micro-, to macroscales.

Feb 14th, 2018

Perfect edges in graphene devices sabotage the Hall effect

graphene_egeResearchers have looked closer at the Hall effect in narrow graphene devices - so-called graphene nanoribbons and nanoconstrictions. They were puzzled when they found that the quantization of the conductance was destroyed in some samples - especially because these particular samples were optimized for low edge disorder and low contamination. As it turned out, this effect had been predicted by several theoretical physicists twenty years ago, but largely ignored since no experimental evidence was ever found.

Feb 13th, 2018

Nanocoating wiggles surface clean

self-cleaning_coatingResearchers have developed a nanocoating that wipes off dust and sand from a surface by an electrical trigger, e.g. to clean solar panels in desert like conditions. This novel coating forms dynamic surface undulations fuelled by an alternating electric field. This new approach is based on resonance enhanced microscopic (di)electric coupling of polar mesogens to the electric field. Further applications could be removal of water droplets on car screens; dust removal from lenses and other optical systems; and controlling friction at or between surfaces.

Feb 12th, 2018

Controlling the kinetics of ion-capturing/ion-releasing regimes in liquid crystals by means of nanoparticles

LCDNew work describes how to control the kinetics of ion-capturing/ion-releasing regimes in liquid crystals by means of nanoparticles. Various types of nanomaterials and alignment layers are considered major components of the next generation of advanced liquid crystal devices. While the steady-state properties of ion-capturing/ion-releasing processes in liquid crystals doped with nanoparticles and sandwiched between alignment films are relatively well understood, the kinetics of these phenomena remains practically unexplored.

Feb 9th, 2018

A rewritable metacanvas for photonic applications (w/video)

metacanvasThe metacanvas is a completely new generation of technology compared to all previous works. It is a tunable photonic devices based on vanadium dioxide that is lithography-free and fully reconfigurable. oth the patterns and the functionalities of the metacanvas can be arbitrarily reconfigured, which leads to many more degrees of freedom in metasurface design and functionalities. One piece of metacanvas is able to function as different optical components - hologram, phase-array, polarizer, modulator, etc. - at different times and on command, which has never been achieved in any of the previous VO2.

Feb 7th, 2018

On-demand liquid release from a sponge-like coating

nanofluidicsA novel approach to deliver liquids from a solid coating is both location- and time- controlled. The sponge-like coating can repeatedly absorb liquids and release them again. The type of release, either droplets or film, can be initiated by a short exposure with UV light. The uptake is accelerated by exposure with blue light. The principle of this coating is based on a photoresponsive liquid-filled smectic crystal network (LCN).

Feb 6th, 2018

Kirigami nanofluidic devices

kirigamiRecent research in nanofluidics has adopted reconstructed layered two-dimensional (2D) sheets (such as graphene oxide or clay) as a promising material platform for nanofluidics. These membranes contain a high volume fraction of interconnected 2D nanochannels. This nanochannel fabrication method is straightforward and scalable, and does not rely on lithography or etching. The researchers termed this process, which opens up a range of new opportunities for manipulating ionic transport by tailoring the shape of the films, kirigami nanofluidics.

Feb 2nd, 2018

3D printing of living responsive devices

3D-printingResearchers have demonstrated a new paradigm in 3D-printing by using genetically programmed living cells as active components to print living materials and devices. The living cells are engineered to light up in response to a variety of stimuli. When mixed with a slurry of hydrogel and nutrients, the cells can be printed, layer by layer, to form three-dimensional, interactive structures and devices. These printed large-scale high-resolution living materials accurately respond to signaling chemicals in a programmed manners.

Jan 31st, 2018