Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 121 - 128 of 490 in category Fabrication Technologies and Devices (newest first):


A room-temperature alternative to reducing the thermal conductivity of crystalline silicon

crystalline_siliconThermoelectric materials hold great promise for turning waste heat back into useful power and are touted for use in hybrid cars, new and efficient refrigerators, and other cooling or heating applications. But they have one big drawback: they are very inefficient. Since thermoelectric devices work by maintaining a temperature difference between their different sides, it is important that the used materials have low conductivity, i.e. are good thermal insulators.

Jul 7th, 2014

Controlling nanotube orientation in 3D architectures

3D_nanostructureThe microstructures of carbon nanotube assemblies determine their properties, for example, highly graphitized CNTs exhibit excellent mechanical and electrical properties; while CNTs with defects and poor crystallinity are beneficial for research on field emission property and hydrogen storage capacity. Therefore, it is of vital importance to control the CNT microstructures effectively for desired applications. A new technique can solve a problem of three-dimensional orientation control of CNTs in microscopic scale.

Jun 30th, 2014

Untethered active microgripper for single-cell analysis

microgripperThere are a wide range of passive devices such as beads, wells and tubes that can be used to capture and confine single cells. Previous active cell grippers with moving parts have relied on electrical modalities which can be challenging to implement off-chip and in a highly parallel manner. Researchers have now, for the first time, demonstrated an untethered active microgripper that can be used to capture and contain single cells.

Jun 25th, 2014

Embedded 3D printing for soft robotics fabrication

sensorA significant challenge in soft robotics involves fabricating soft sensors and actuators which, so far, have been very tedious to produce. Building soft sensors used by roboticists usually requires a multi-step, manual molding-lamination-sealing-infilling process. As a result, the design and fabrication process is cumbersome; the sensor form factors are unnecessarily limited; and there are issues with mechanical robustness. Now, though, researchers have demonstrated a new method for creating highly stretchable sensors based on embedded 3D printing of a carbon-based resistive ink within an elastomeric matrix.

Jun 24th, 2014

The long and tortuous path of EUV lithography to full production

EUV_lithographyEUV lithography was first included in the next-generation lithography road maps in the early 90s, but after about 20 years it is not yet ready for prime time. In this article we briefly analyze the history of EUV in the last 2 decades and the situation as of today. Extreme ultraviolet technology posed and still poses formidable challenges as it is based on principles vastly different from conventional DUV (deep ultraviolet) lithography.

Apr 24th, 2014

New synthesis method for graphene using agricultural waste

grapheneResearchers have proposed an alternative way of making graphene from rice husk. This research, using an ordinary synthetic apparatus and abundant agricultural waste, suggest that low cost graphene materials could now be easily and cheaply synthesized on an industrial scale. Due to its abundance, risk husk has already received much attention as a starting material in generating high-value-added materials such as silica and porous carbon.

Apr 7th, 2014

Flexible silicon-on-polymer sub-20 nm FinFETs without performance loss

FinFETsFlexible electronics is a rising field in terms of research and potential application opportunities to obtain similar characteristics than today's prevailing rigid electronics components. In new work, researchers have demonstrated the semiconductor industry's most advanced device architecture - FinFET, a new generation of device architecture which Intel has adopted in 2011 in their microprocessors; these field effect transistors offer non-planar three-dimensional topology where the channels are vertically aligned in arrays of ultra-thin silicon fins bordered by multiple gates - in a flexible platform using only industry standard processes and keeping the advantages offered by silicon.

Mar 11th, 2014

Conductive nanomaterials for printed electronics applications

printed_electronicsThe term printed electronics refers to the application of printing technologies for the fabrication of electronic circuits and devices, increasingly on flexible plastic or paper substrates. Traditionally, electronic devices are mainly manufactured by photolithography, vacuum deposition, and electroless plating processes. In contrast to these multistaged, expensive, and wasteful methods, inkjet printing offers a rapid and cheap way of printing electrical circuits with commodity inkjet printers and off-the-shelf materials.

Feb 27th, 2014