Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 129 - 136 of 2140 in category (newest first):

 

Acoustic microstreaming - using sound waves for microfluidic applications (w/video)

microfluidicsPrecise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. A new technique that offers simple, non-specific and long-lasting operation has been developed in form of an ultrasound-based method to guide microparticles in an autonomous and reproducible fashion, along with engineered topographical features - something like an automated highway system for microparticles.

Oct 20th, 2017

Nanotechnology for neuroscience

Notwithstanding the progress neuroscientists have made in understanding the microscale function of single neurons and the macroscale activity of the human brain - a comprehensive understanding of the brain still remains an elusive goal. Here we review the basic concepts associated with neuroscience and the current journey of nanotechnology towards the study of neuron function by addressing various concerns on the significant role of nanomaterials in neuroscience and by describing the future applications of this emerging technology.

Oct 18th, 2017

Nanotechnology innovation safety aspects - the case of graphene

grapheneCurrently, most graphene-based innovations are not yet at the level of large-scale commercial production. But public and private investments into graphene and its applications in products are large and whichever production methods eventually turn out to be successful, exposure to humans or the environment somewhere along the value chain or life-cycle of the material or product should be anticipated timely. A new review paper offers suggestions on how potential nanospecific safety issues can be addressed, by who and at what stage of the innovation process.

Oct 16th, 2017

Hydrogen bond strength in DNA: where 3 could be less than 2

hydrogen_bondsHydrogen bond base pairing forces are essential for the mechanisms associated with DNA stability. Despite attracting great research attention, this fundamental interaction has eluded a precise physical description so far since its electrical origin has not been quantified yet. Researchers now have proposed characterization by means of electrical forces, providing a framework for universal characterization of hydrogen bonds. In this way, they provide technical arguments to support that hydrogen bonds are well distinguishable and their role in biological events require a proper specific intrabond description.

Oct 10th, 2017

Graphene origami - folding with 'colors'

origami_patternJust like traditional paper origami that results in complicated 3D structures from 2D paper, graphene origami allows the design and fabrication of carbon nanostructures that are not naturally existing but of desirable properties. In a new report, researchers describe how p-type and n-type doping of 2D sheets like graphene in selected areas could be exploited as two 'colors' to guide the sheets into preferred folded shapes where complementarily doped areas maximize their mutual overlap.

Oct 6th, 2017

Combining scanning probe technologies with microbeads for low-cost, high-resolution optical lithography systems

cantileverAmong the important parameters in optical lithography is the spatial resolution you can get and the time you need to draw your pattern. Systems with regular and fixed patterns can be extremely fast but those systems are based on masks. Mask production is a time consuming and expensive process. So-called mask-less systems can draw unorganized patterns directly on substrates, at the cost of longer process times. Researchers now have presented a new lithographic approach with a high-resolution, low-cost technique based on nanosphere lithography.

Oct 4th, 2017

Electrode layer prepared from activated carbon (from tea leaves) enhances fuel cell performance by 33%

carbon_catalystChemical engineering researchers have reported the usage of activated carbon prepared from tea leaves, improving the mass transport phenomenon (33 % performance improvement) in an operating direct methanol fuel cell, owing to its pore structure characteristics. The cell performance underwent drastic changes in the mass transport region of the fuel cell polarization curve, comparable to the standard membrane electrode assembly. This is attributed to the pore structure of this framework aiding in enhanced water removal, as a result more air molecules react with the platinum catalyst sites finally improving the fuel cell performance.

Oct 3rd, 2017

Monitoring oxygen reaction dynamics with an individual nanosheet-based electronic circuit

electrochemical_cellElectrocatalysis offers important opportunities for clean fuel production, but uncovering the chemistry at the electrode surface remains a challenge. Here, this work exploits a single-nanosheet device to perform in-situ measurements of water oxidation electrocatalysis and reveal a crucial interaction with oxygen. The obtained in-depth understanding could provide valuable clues for catalysis system design and the in-situ measurement could be also useful to analyze other interfacial reaction processes.

Sep 29th, 2017